Interface MercerKernel<T>
- Type Parameters:
T- the input type of kernel function.
- All Superinterfaces:
Serializable, ToDoubleBiFunction<T,T>
- All Known Implementing Classes:
BinarySparseGaussianKernel, BinarySparseHyperbolicTangentKernel, BinarySparseLaplacianKernel, BinarySparseLinearKernel, BinarySparseMaternKernel, BinarySparsePolynomialKernel, BinarySparseThinPlateSplineKernel, GaussianKernel, HellingerKernel, HyperbolicTangentKernel, LaplacianKernel, LinearKernel, MaternKernel, PearsonKernel, PolynomialKernel, ProductKernel, SparseGaussianKernel, SparseHyperbolicTangentKernel, SparseLaplacianKernel, SparseLinearKernel, SparseMaternKernel, SparsePolynomialKernel, SparseThinPlateSplineKernel, SumKernel, ThinPlateSplineKernel
k(x,y) = k(y,x).
A Mercer kernel is a kernel that is positive Semi-definite. When a kernel
is positive semi-definite, one may exploit the kernel trick, the idea of
implicitly mapping data to a high-dimensional feature space where some
linear algorithm is applied that works exclusively with inner products.
Assume we have some mapping Φ from an input space X to a feature space H,
then a kernel k(u, v) = <Φ(u), Φ(v)> may be used
to define the inner product in feature space H.
Positive definiteness in the context of kernel functions also implies that a kernel matrix created using a particular kernel is positive semi-definite. A matrix is positive semi-definite if its associated eigenvalues are non-negative.
We can combine or modify existing kernel functions to make new one. For example, the sum of two kernels is a kernel. The product of two kernels is also a kernel.
A stationary covariance function is a function of distance x − y.
Thus, it is invariant stationarity to translations in the input space.
If further the covariance function is a function only of |x − y|
then it is called isotropic; it is thus invariant to all rigid motions.
If a covariance function depends only on the dot product of x and y,
we call it a dot product covariance function.
-
Method Summary
Modifier and TypeMethodDescriptiondefault doubleKernel function.default doubleapplyAsDouble(T x, T y) static MercerKernel<int[]> Returns a binary sparse kernel function.double[]hi()Returns the upper bound of hyperparameters (in hyperparameter tuning).double[]Returns the hyperparameters of kernel.doubleKernel function.default DenseMatrixComputes the kernel matrix.default DenseMatrixReturns the kernel matrix.double[]Computes the kernel and its gradient over hyperparameters.default DenseMatrix[]Computes the kernel and gradient matrices.double[]lo()Returns the lower bound of hyperparameters (in hyperparameter tuning).of(double[] params) Returns the same kind kernel with the new hyperparameters.static MercerKernel<double[]> Returns a kernel function.static MercerKernel<SparseArray> Returns a sparse kernel function.
-
Method Details
-
k
-
kg
-
apply
-
applyAsDouble
- Specified by:
applyAsDoublein interfaceToDoubleBiFunction<T,T>
-
KG
Computes the kernel and gradient matrices.- Parameters:
x- objects.- Returns:
- the kernel and gradient matrices.
-
K
Computes the kernel matrix.- Parameters:
x- objects.- Returns:
- the kernel matrix.
-
K
Returns the kernel matrix.- Parameters:
x- objects.y- objects.- Returns:
- the kernel matrix.
-
of
Returns the same kind kernel with the new hyperparameters.- Parameters:
params- the hyperparameters.- Returns:
- the same kind kernel with the new hyperparameters.
-
hyperparameters
double[] hyperparameters()Returns the hyperparameters of kernel.- Returns:
- the hyperparameters of kernel.
-
lo
double[] lo()Returns the lower bound of hyperparameters (in hyperparameter tuning).- Returns:
- the lower bound of hyperparameters.
-
hi
double[] hi()Returns the upper bound of hyperparameters (in hyperparameter tuning).- Returns:
- the upper bound of hyperparameters.
-
of
Returns a kernel function.- Parameters:
kernel- the kernel function string representation.- Returns:
- the kernel function.
-
sparse
Returns a sparse kernel function.- Parameters:
kernel- the kernel function string representation.- Returns:
- the kernel function.
-
binary
Returns a binary sparse kernel function.- Parameters:
kernel- the kernel function string representation.- Returns:
- the kernel function.
-