Interface MercerKernel<T>
- Type Parameters:
- T- the input type of kernel function.
- All Superinterfaces:
- Serializable, ToDoubleBiFunction<T,- T> 
- All Known Implementing Classes:
- BinarySparseGaussianKernel, BinarySparseHyperbolicTangentKernel, BinarySparseLaplacianKernel, BinarySparseLinearKernel, BinarySparseMaternKernel, BinarySparsePolynomialKernel, BinarySparseThinPlateSplineKernel, GaussianKernel, HellingerKernel, HyperbolicTangentKernel, LaplacianKernel, LinearKernel, MaternKernel, PearsonKernel, PolynomialKernel, ProductKernel, SparseGaussianKernel, SparseHyperbolicTangentKernel, SparseLaplacianKernel, SparseLinearKernel, SparseMaternKernel, SparsePolynomialKernel, SparseThinPlateSplineKernel, SumKernel, ThinPlateSplineKernel
k(x,y) = k(y,x).
A Mercer kernel is a kernel that is positive Semi-definite. When a kernel
is positive semi-definite, one may exploit the kernel trick, the idea of
implicitly mapping data to a high-dimensional feature space where some
linear algorithm is applied that works exclusively with inner products.
Assume we have some mapping Φ from an input space X to a feature space H,
then a kernel k(u, v) = <Φ(u), Φ(v)> may be used
to define the inner product in feature space H.
Positive definiteness in the context of kernel functions also implies that a kernel matrix created using a particular kernel is positive semi-definite. A matrix is positive semi-definite if its associated eigenvalues are non-negative.
We can combine or modify existing kernel functions to make new one. For example, the sum of two kernels is a kernel. The product of two kernels is also a kernel.
A stationary covariance function is a function of distance x − y.
Thus, it is invariant stationarity to translations in the input space.
If further the covariance function is a function only of |x − y|
then it is called isotropic; it is thus invariant to all rigid motions.
If a covariance function depends only on the dot product of x and y,
we call it a dot product covariance function.
- 
Method SummaryModifier and TypeMethodDescriptiondefault doubleKernel function.default doubleapplyAsDouble(T x, T y) static MercerKernel<int[]> Returns a binary sparse kernel function.double[]hi()Returns the upper bound of hyperparameters (in hyperparameter tuning).double[]Returns the hyperparameters of kernel.doubleKernel function.default DenseMatrixComputes the kernel matrix.default DenseMatrixReturns the kernel matrix.double[]Computes the kernel and its gradient over hyperparameters.default DenseMatrix[]Computes the kernel and gradient matrices.double[]lo()Returns the lower bound of hyperparameters (in hyperparameter tuning).of(double[] params) Returns the same kind kernel with the new hyperparameters.static MercerKernel<double[]> Returns a kernel function.static MercerKernel<SparseArray> Returns a sparse kernel function.
- 
Method Details- 
k
- 
kg
- 
apply
- 
applyAsDouble- Specified by:
- applyAsDoublein interface- ToDoubleBiFunction<T,- T> 
 
- 
KGComputes the kernel and gradient matrices.- Parameters:
- x- objects.
- Returns:
- the kernel and gradient matrices.
 
- 
KComputes the kernel matrix.- Parameters:
- x- objects.
- Returns:
- the kernel matrix.
 
- 
KReturns the kernel matrix.- Parameters:
- x- objects.
- y- objects.
- Returns:
- the kernel matrix.
 
- 
ofReturns the same kind kernel with the new hyperparameters.- Parameters:
- params- the hyperparameters.
- Returns:
- the same kind kernel with the new hyperparameters.
 
- 
hyperparametersdouble[] hyperparameters()Returns the hyperparameters of kernel.- Returns:
- the hyperparameters of kernel.
 
- 
lodouble[] lo()Returns the lower bound of hyperparameters (in hyperparameter tuning).- Returns:
- the lower bound of hyperparameters.
 
- 
hidouble[] hi()Returns the upper bound of hyperparameters (in hyperparameter tuning).- Returns:
- the upper bound of hyperparameters.
 
- 
ofReturns a kernel function.- Parameters:
- kernel- the kernel function string representation.
- Returns:
- the kernel function.
 
- 
sparseReturns a sparse kernel function.- Parameters:
- kernel- the kernel function string representation.
- Returns:
- the kernel function.
 
- 
binaryReturns a binary sparse kernel function.- Parameters:
- kernel- the kernel function string representation.
- Returns:
- the kernel function.
 
 
-