Package smile.math.kernel
Class PearsonKernel
java.lang.Object
smile.math.kernel.PearsonKernel
- All Implemented Interfaces:
Serializable
,ToDoubleBiFunction<double[],
,double[]> MercerKernel<double[]>
Pearson VII universal kernel. The Pearson VII function
is often used for curve fitting of X-ray diffraction
scans and single bands in infrared spectra.
References
- B. Üstün, W.J. Melssen, and L. Buydens. Facilitating the Application of Support Vector Regression by Using a Universal Pearson VII Function Based Kernel, 2006.
- See Also:
-
Constructor Summary
ConstructorDescriptionPearsonKernel
(double sigma, double omega) Constructor.PearsonKernel
(double sigma, double omega, double lo, double hi) Constructor. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
hi()
Returns the upper bound of hyperparameters (in hyperparameter tuning).double[]
Returns the hyperparameters of kernel.double
k
(double[] x, double[] y) Kernel function.double[]
kg
(double[] x, double[] y) Computes the kernel and its gradient over hyperparameters.double[]
lo()
Returns the lower bound of hyperparameters (in hyperparameter tuning).of
(double[] params) Returns the same kind kernel with the new hyperparameters.double
omega()
Returns the tailing factor of the peak.double
sigma()
Returns Pearson width.toString()
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface smile.math.kernel.MercerKernel
apply, applyAsDouble, K, K, KG
-
Constructor Details
-
PearsonKernel
public PearsonKernel(double sigma, double omega) Constructor.- Parameters:
sigma
- Pearson width.omega
- The tailing factor of the peak.
-
PearsonKernel
public PearsonKernel(double sigma, double omega, double lo, double hi) Constructor.- Parameters:
sigma
- Pearson width.omega
- The tailing factor of the peak. The tailing factor is fixed during hyperparameter tuning.lo
- The lower bound of length scale for hyperparameter tuning.hi
- The upper bound of length scale for hyperparameter tuning.
-
-
Method Details
-
sigma
public double sigma()Returns Pearson width.- Returns:
- Pearson width.
-
omega
public double omega()Returns the tailing factor of the peak.- Returns:
- the tailing factor of the peak.
-
toString
-
k
public double k(double[] x, double[] y) Description copied from interface:MercerKernel
Kernel function.- Specified by:
k
in interfaceMercerKernel<double[]>
- Parameters:
x
- an object.y
- an object.- Returns:
- the kernel value.
-
kg
public double[] kg(double[] x, double[] y) Description copied from interface:MercerKernel
Computes the kernel and its gradient over hyperparameters.- Specified by:
kg
in interfaceMercerKernel<double[]>
- Parameters:
x
- an object.y
- an object.- Returns:
- the kernel value and gradient.
-
of
Description copied from interface:MercerKernel
Returns the same kind kernel with the new hyperparameters.- Specified by:
of
in interfaceMercerKernel<double[]>
- Parameters:
params
- the hyperparameters.- Returns:
- the same kind kernel with the new hyperparameters.
-
hyperparameters
public double[] hyperparameters()Description copied from interface:MercerKernel
Returns the hyperparameters of kernel.- Specified by:
hyperparameters
in interfaceMercerKernel<double[]>
- Returns:
- the hyperparameters of kernel.
-
lo
public double[] lo()Description copied from interface:MercerKernel
Returns the lower bound of hyperparameters (in hyperparameter tuning).- Specified by:
lo
in interfaceMercerKernel<double[]>
- Returns:
- the lower bound of hyperparameters.
-
hi
public double[] hi()Description copied from interface:MercerKernel
Returns the upper bound of hyperparameters (in hyperparameter tuning).- Specified by:
hi
in interfaceMercerKernel<double[]>
- Returns:
- the upper bound of hyperparameters.
-