Linear Algebra
Smile Shell provides an MATLAB like environment. In the simplest case, you can use it as a calculator.
smile> "Hello, World"
res0: String = Hello, World
smile> 2
res1: Int = 2
smile> 2+3
res2: Int = 5
smile> "Hello, World"
$9 ==> "Hello, World"
smile> 2
$10 ==> 2
smile> 2+3
$11 ==> 5
Math Functions
Besides java.lang.Math
functions, smile.math.MathEx
provides many other important mathematical functions such as
factorial
, choose
, etc.
smile> choose(10, 3)
res8: Double = 120.0
smile> import static smile.math.MathEx.*
smile> choose(10, 3)
$14 ==> 120.0
Special Functions
Special mathematical functions include beta
,
erf
, gamma
and their related functions. Special
functions are particular mathematical functions which have more or less
established names and notations due to their importance in mathematical
analysis, functional analysis, physics, or other applications.
Many special functions appear as solutions of differential equations or
integrals of elementary functions. For example, the error function
erf
(also called the Gauss error function) is a special
function of sigmoid shape which occurs in probability, statistics, materials
science, and partial differential equations. The complementary error function,
denoted erfc
, is defined as erfc(x) = 1 - erf(x)
.
The error function and complementary error function are special cases of the
incomplete gamma function.
smile> erf(1.0)
res0: Double = 0.8427007929497149
smile> digamma(1.0)
res11: Double = -0.5772156649015328
smile> import smile.math.special.*
smile> Erf.erf(1.0)
$16 ==> 0.8427007929497149
smile> Gamma.digamma(1.0)
$17 ==> -0.5772156649015328
Vector Operations
Common arithmetic operations on vectors and scalars are similar as in R and Matlab.
smile> val x = c(1.0, 2.0, 3.0, 4.0)
smile> val y = c(4.0, 3.0, 2.0, 1.0)
smile> x + y
res22: smile.math.VectorAddVector = Array(5.0, 5.0, 5.0, 5.0)
smile> 1.5 * x - 3.0 * y
res24: smile.math.VectorSubVector = Array(-10.5, -6.0, -1.5, 3.0)
smile> double[] x = {1.0, 2.0, 3.0, 4.0}
x ==> double[4] { 1.0, 2.0, 3.0, 4.0 }
smile> double[] y = {4.0, 3.0, 2.0, 1.0}
y ==> double[4] { 4.0, 3.0, 2.0, 1.0 }
// vector expression is not supported in Java
Note that these operations are lazy. The computation is only performed when the results are needed, e.g. when the expression is used where a vector is expected. In the Shell, the expression is immediately performed because the Shell always prints out the results.
For a vector, there are multiple functions to calculate its norm such as norm
(L2 norm), norm1
(L1 norm),
norm2
(L2 norm), normInf
(infinity norm), normFro
(Frobenius norm).
We can also standardize
a vector to mean 0 and variance 1,
unitize
it so that L2 norm be 1,
or unitize1
it so that L1 norm be 1.
smile> norm(x)
res13: Double = 5.477225575051661
smile> unitize(y)
smile> y
res14: Array[Double] = Array(0.7302967433402214, 0.5477225575051661, 0.3651483716701107, 0.18257418583505536)
smile> norm(x)
$20 ==> 5.477225575051661
smile> unitize(y)
smile> y
y ==> double[4] { 0.7302967433402214, 0.5477225575051661, 0.3651483716701107, 0.18257418583505536 }
For a pair of vectors, we can calculate the dot product, distance, divergence, covariance,
and correlations with dot
, distance
, kld
(Kullback-Leibler Divergence),
jsd
(Jensen-Shannon Divergence), cov
, cor
(Pearson Correlation),
spearman
(Spearman Rank Correlation Coefficient), kendall
(Kendall Tau Rank Correlation Coefficient).
smile> dot(x, y)
res16: Double = 3.651483716701107
smile> cov(x, y)
res17: Double = -0.30429030972509225
smile> dot(x, y)
res5: Double = 3.651483716701107
smile> cov(x, y)
res6: Double = -0.30429030972509225
Matrix Operations
Like Matlab, we can use eye
, zeros
and ones
to create identity, zero, or all-ones matrix, respectively.
To create a matrix from 2-dimensional array, we can use the constructor matrix
or the ~
operator.
The ~
operator can be applied to 1-dimensional array too, which creates
a single column matrix.
val a = matrix(
c(0.7220180, 0.07121225, 0.6881997),
c(-0.2648886, -0.89044952, 0.3700456),
c(-0.6391588, 0.44947578, 0.6240573)
)
val b = matrix(
c(0.6881997, -0.07121225, 0.7220180),
c(0.3700456, 0.89044952, -0.2648886),
c(0.6240573, -0.44947578, -0.6391588)
)
val C = Array(
Array(0.9527204, -0.2973347, 0.06257778),
Array(-0.2808735, -0.9403636, -0.19190231),
Array(0.1159052, 0.1652528, -0.97941688)
)
val c = ~C // or val c = matrix(C)
import smile.math.matrix.*;
double[][] A = {
{0.7220180, 0.07121225, 0.6881997},
{-0.2648886, -0.89044952, 0.3700456},
{-0.6391588, 0.44947578, 0.6240573}
};
double[][] B = {
{0.6881997, -0.07121225, 0.7220180},
{0.3700456, 0.89044952, -0.2648886},
{0.6240573, -0.44947578, -0.6391588}
};
double[][] C = {
{0.9527204, -0.2973347, 0.06257778},
{-0.2808735, -0.9403636, -0.19190231},
{0.1159052, 0.1652528, -0.97941688}
};
var a = Matrix.of(A);
var b = Matrix.of(B);
var c = Matrix.of(C);
In Scala, matrix-vector operations are just like in math formula.
smile> val x = c(1.0, 2.0, 3.0)
x: Array[Double] = Array(1.0, 2.0, 3.0)
smile> val y = c(3.0, 2.0, 1.0)
y: Array[Double] = Array(3.0, 2.0, 1.0)
smile> val res: Array[Double] = a * x + 1.5 * y
res: Array[Double] = Array(7.4290416, 2.06434916, 3.63196466)
smile> double[] x = {1.0, 2.0, 3.0}
x ==> double[3] { 1.0, 2.0, 3.0 }
smile> double[] y = {3.0, 2.0, 1.0}
y ==> double[3] { 3.0, 2.0, 1.0 }
smile> a.mv(1.0, x, 1.5, y)
$48 ==> double[3] { 7.4290416, 2.06434916, 3.63196466 }
Similarly, for matrix-matrix operations:
smile> a + b // returns a lazy expression of a + b
res27: smile.math.MatrixAddMatrix =
1.4102 0.0000 1.4102
0.1052 0.0000 0.1052
-0.0151 0.0000 -0.0151
smile> a.add(b) // a = a + b
$44 ==> 3 x 3
1.4102 0.0000 1.4102
0.1052 0.0000 0.1052
-0.0151 0.0000 -0.0151
Note that a * b
are element-wise:
smile> a * b // returns a lazy expression of a * b
res28: smile.math.MatrixMulMatrix =
0.4969 -0.0051 0.4969
-0.0980 -0.7929 -0.0980
-0.3989 -0.2020 -0.3989
smile> a.mul(b) // a *= b
$45 ==> 3 x 3
0.4969 -0.0051 0.4969
-0.0980 -0.7929 -0.0980
-0.3989 -0.2020 -0.3989
For matrix multiplication, the operator is %*%
, same as in R
smile> a %*% b %*% c
[main] INFO smile.math.MatrixOrderOptimization - The minimum cost of matrix multiplication chain: 54
res29: smile.math.MatrixExpression =
0.9984 0.0067 0.0554
-0.0257 0.9361 0.3508
-0.0495 -0.3517 0.9348
smile> a.mm(b).mm(c)
$49 ==> 3 x 3
0.9984 0.0067 0.0554
-0.0257 0.9361 0.3508
-0.0495 -0.3517 0.9348
The method Matrix.transpose
returns the transpose of matrix,
which executes immediately. However, the method t
is preferred
on MatrixExpression
as it is lazy.
smile> a %*% b.t %*% c
[main] INFO smile.math.MatrixOrderOptimization - The minimum cost of matrix multiplication chain: 54
res30: smile.math.MatrixExpression =
0.8978 -0.4369 0.0543
0.4189 0.8856 0.2006
-0.1357 -0.1574 0.9782
smile> a.mt(b).mm(c)
$50 ==> 3 x 3
0.8978 -0.4369 0.0543
0.4189 0.8856 0.2006
-0.1357 -0.1574 0.9782
Smile has runtime optimization for matrix multiplication chain, which can greatly improve the performance. Note that this optimization is only available in Scala API. In the below we generate several random matrices and multiply them together.
val a = randn( 300, 900)
val b = randn( 900, 150)
val c = randn( 150, 1800)
val d = randn(1800, 30)
time("matrix multiplication") {(a %*% b %*% c %*% d).toMatrix}
smile> var a = Matrix.randn( 300, 900)
[main] INFO smile.math.MathEx - Set RNG seed 19650218 for thread main
a ==> 300 x 900
-0.9299 -0.4984 1.3793 1.8589 ... 4842 -0.5907 ...
...
smile> var b = Matrix.randn( 900, 150)
b ==> 900 x 150
0.9851 0.9842 0.7543 -0.6598 ... 9706 0.9420 ...
...
smile> var c = Matrix.randn( 150, 1800)
c ==> 150 x 1800
0.8682 -1.9094 -0.2466 0.1238 ... 2070 -1.1657 ...
...
smile> var d = Matrix.randn(1800, 30)
d ==> 1800 x 30
-0.1421 -0.4016 -1.7960 0.2153 ... 6566 -1.0292 ...
...
smile> a.mm(b).mm(c).mm(d)
$55 ==> 300 x 30
1027.7940 -7083.7899 20850.3728 14316.0928 3122.5039 6656.6392 -14332.0066 ...
-15355.3544 18424.0367 3362.8806 1969.2299 -23705.3085 -8948.9324 7468.9138 ...
-442.4282 7575.2694 -8070.4564 15107.1986 10726.3271 -170.4820 -19199.5856 ...
4155.9123 -11273.9462 4326.8992 -276.7401 22746.9657 23260.6079 -1052.8137 ...
27450.9909 -353.9005 26619.2334 -2807.0904 -18675.1774 -7891.4804 9164.3414 ...
11257.9267 -12587.2370 -15836.0616 -8085.9522 -1277.4189 -11561.2331 -8508.3348 ...
-7136.4159 3785.3912 -15033.8276 9799.7746 -16499.4337 16218.9645 13444.4842 ...
...
where randn()
creates a matrix of normally distributed
random numbers. The shell will try to load machine optimized
BLAS/LAPACK native libraries for most matrix computation.
If BLAS/LAPACK is not available, smile will fall back to pure Java
implementation.
Matrix Decomposition
In linear algebra, a matrix decomposition or matrix factorization
is a factorization of a matrix into a product of matrices.
There are various matrix decompositions. In Smile, we provide
LU, QR, Cholesky, eigen, and SVD decomposition by functions
lu
, qr
, cholesky
,
eigen
, and svd
, respectively.
With these decompositions, many important linear algebra operations
can be performed such as calculating matrix rank, determinant, solving
linear systems, computing inverse matrix, etc.
In fact, Smile has functions det
,
rank
, inv
and operator \
for these common computation.
smile> val x = Array(1.0, 2.0, 3.0)
x: Array[Double] = Array(1.0, 2.0, 3.0)
smile> a \ x
res14: Array[Double] = Array(2.9290414582113184, -0.9356509345036078, 2.131964578605774)
smile> inv(a)
res19: smile.math.matrix.Matrix =
0.7220 -0.2649 -0.6392
0.0712 -0.8904 0.4495
0.6882 0.3700 0.6241
smile> inv(a) %*% a
res21: smile.math.MatrixExpression =
1.0000 0.0000 0.0000
-0.0000 1.0000 0.0000
-0.0000 0.0000 1.0000
smile> double[] x = {1.0, 2.0, 3.0}
x ==> double[3] { 1.0, 2.0, 3.0 }
smile> var inv = a.inverse()
inv ==> 3 x 3
0.7220 -0.2649 -0.6392
0.0712 -0.8904 0.4495
0.6882 0.3700 0.6241
smile> inv.mm(a)
$67 ==> 3 x 3
1.0000 -0.0000 0.0000
-0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
smile> var lu = a.lu()
lu ==> smile.math.matrix.Matrix$LU@5f375618
smile> lu.solve(x)
$69 ==> double[3] { -1.7252356779053744, -0.3612592362819077, 3.3004624918302046 }