Package smile.validation
Record Class RegressionValidation<M>
java.lang.Object
java.lang.Record
smile.validation.RegressionValidation<M>
- Type Parameters:
M
- the regression model type.- Record Components:
model
- The regression model.truth
- The ground true of validation data.prediction
- The model prediction.metrics
- The regression metrics.
- All Implemented Interfaces:
Serializable
public record RegressionValidation<M>(M model, double[] truth, double[] prediction, RegressionMetrics metrics)
extends Record
implements Serializable
Regression model validation results.
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionRegressionValidation
(M model, double[] truth, double[] prediction, RegressionMetrics metrics) Creates an instance of aRegressionValidation
record class. -
Method Summary
Modifier and TypeMethodDescriptionfinal boolean
Indicates whether some other object is "equal to" this one.final int
hashCode()
Returns a hash code value for this object.metrics()
Returns the value of themetrics
record component.model()
Returns the value of themodel
record component.static <M extends DataFrameRegression>
RegressionValidation<M> Trains and validates a model on a train/validation split.static <M extends DataFrameRegression>
RegressionValidations<M> Trains and validates a model on multiple train/validation split.static <T,
M extends Regression<T>>
RegressionValidations<M> of
(Bag[] bags, T[] x, double[] y, BiFunction<T[], double[], M> trainer) Trains and validates a model on multiple train/validation split.static <T,
M extends Regression<T>>
RegressionValidation<M> of
(T[] x, double[] y, T[] testx, double[] testy, BiFunction<T[], double[], M> trainer) Trains and validates a model on a train/validation split.double[]
Returns the value of theprediction
record component.toString()
Returns a string representation of this record class.double[]
truth()
Returns the value of thetruth
record component.
-
Constructor Details
-
RegressionValidation
public RegressionValidation(M model, double[] truth, double[] prediction, RegressionMetrics metrics) Creates an instance of aRegressionValidation
record class.- Parameters:
model
- the value for themodel
record componenttruth
- the value for thetruth
record componentprediction
- the value for theprediction
record componentmetrics
- the value for themetrics
record component
-
-
Method Details
-
toString
Returns a string representation of this record class. The representation contains the name of the class, followed by the name and value of each of the record components. -
of
public static <T,M extends Regression<T>> RegressionValidation<M> of(T[] x, double[] y, T[] testx, double[] testy, BiFunction<T[], double[], M> trainer) Trains and validates a model on a train/validation split.- Type Parameters:
T
- the data type of samples.M
- the model type.- Parameters:
x
- the training data.y
- the responsible variable of training data.testx
- the validation data.testy
- the responsible variable of validation data.trainer
- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <T,M extends Regression<T>> RegressionValidations<M> of(Bag[] bags, T[] x, double[] y, BiFunction<T[], double[], M> trainer) Trains and validates a model on multiple train/validation split.- Type Parameters:
T
- the data type of samples.M
- the model type.- Parameters:
bags
- the data splits.x
- the training data.y
- the responsible variable.trainer
- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <M extends DataFrameRegression> RegressionValidation<M> of(Formula formula, DataFrame train, DataFrame test, BiFunction<Formula, DataFrame, M> trainer) Trains and validates a model on a train/validation split.- Type Parameters:
M
- the model type.- Parameters:
formula
- the model formula.train
- the training data.test
- the validation data.trainer
- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <M extends DataFrameRegression> RegressionValidations<M> of(Bag[] bags, Formula formula, DataFrame data, BiFunction<Formula, DataFrame, M> trainer) Trains and validates a model on multiple train/validation split.- Type Parameters:
M
- the model type.- Parameters:
bags
- the data splits.formula
- the model formula.data
- the data.trainer
- the lambda to train the model.- Returns:
- the validation results.
-
hashCode
public final int hashCode()Returns a hash code value for this object. The value is derived from the hash code of each of the record components. -
equals
Indicates whether some other object is "equal to" this one. The objects are equal if the other object is of the same class and if all the record components are equal. All components in this record class are compared withObjects::equals(Object,Object)
. -
model
Returns the value of themodel
record component.- Returns:
- the value of the
model
record component
-
truth
public double[] truth()Returns the value of thetruth
record component.- Returns:
- the value of the
truth
record component
-
prediction
public double[] prediction()Returns the value of theprediction
record component.- Returns:
- the value of the
prediction
record component
-
metrics
Returns the value of themetrics
record component.- Returns:
- the value of the
metrics
record component
-