Interface DataFrameRegression
- All Superinterfaces:
Regression<Tuple>, Serializable, ToDoubleFunction<Tuple>
- All Known Implementing Classes:
GradientTreeBoost, LinearModel, RandomForest, RegressionTree
Regression trait on DataFrame.
-
Nested Class Summary
Nested ClassesModifier and TypeInterfaceDescriptionstatic interfaceThe regression trainer. -
Method Summary
Modifier and TypeMethodDescriptionstatic DataFrameRegressionensemble(DataFrameRegression... models) Return an ensemble of multiple base models to obtain better predictive performance.formula()Returns the model formula.static DataFrameRegressionof(Formula formula, DataFrame data, Properties params, Regression.Trainer<double[], ?> trainer) Fits a vector regression model on data frame.default double[]Predicts the dependent variables of a data frame.schema()Returns the schema of predictors.Methods inherited from interface Regression
applyAsDouble, online, predict, predict, predict, predict, update, update, update
-
Method Details
-
formula
-
schema
-
predict
Predicts the dependent variables of a data frame.- Parameters:
data- the data frame.- Returns:
- the predicted values.
-
of
static DataFrameRegression of(Formula formula, DataFrame data, Properties params, Regression.Trainer<double[], ?> trainer) Fits a vector regression model on data frame.- Parameters:
formula- a symbolic description of the model to be fitted.data- the data frame of the explanatory and response variables.params- the hyperparameters.trainer- the training lambda.- Returns:
- the model.
-
ensemble
Return an ensemble of multiple base models to obtain better predictive performance.- Parameters:
models- the base models.- Returns:
- the ensemble model.
-