Interface Model
- All Known Implementing Classes:
ClassificationModel, RegressionModel
public interface Model
Generic model interface.
-
Field Summary
Fields -
Method Summary
Modifier and TypeMethodDescriptionReturns the algorithm name.static DataFrameClassifierclassification(String algorithm, Formula formula, DataFrame data, Properties params) Trains a classification model.static ClassificationModelclassification(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params) Trains a classification model.static ClassificationModelclassification(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params, int kfold, int round, boolean ensemble) Trains a classification model by cross validation.formula()Returns the model formula.default StringReturns the model metadata tag.default StringReturns the model metadata tag.static DataFrameRegressionregression(String algorithm, Formula formula, DataFrame data, Properties params) Trains a regression model.static RegressionModelregression(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params) Trains a regression model.static RegressionModelregression(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params, int kfold, int round, boolean ensemble) Trains a regression model.schema()Returns the schema of input data (without response variable).default voidsetProperty(String key, String value) Sets a model metadata tag.tags()Returns the model metadata tags.
-
Field Details
-
ID
-
VERSION
-
-
Method Details
-
algorithm
-
schema
StructType schema()Returns the schema of input data (without response variable).- Returns:
- the schema of input data (without response variable).
-
formula
-
tags
-
getTag
-
getTag
-
setProperty
-
classification
static ClassificationModel classification(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params, int kfold, int round, boolean ensemble) Trains a classification model by cross validation.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.test- the optional test data.params- the hyperparameters.kfold- k-fold cross validation.round- the number of repeated cross validation.ensemble- create the ensemble of cross validation models if true.- Returns:
- the classification model.
-
classification
static ClassificationModel classification(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params) Trains a classification model.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.test- the optional test data.params- the hyperparameters.- Returns:
- the classification model.
-
classification
static DataFrameClassifier classification(String algorithm, Formula formula, DataFrame data, Properties params) Trains a classification model.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.params- the hyperparameters.- Returns:
- the classification model.
-
regression
static RegressionModel regression(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params, int kfold, int round, boolean ensemble) Trains a regression model.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.test- the optional test data.params- the hyperparameters.kfold- k-fold cross validation if kfold > 1.round- the number of repeated cross validation.ensemble- create the ensemble of cross validation models if true.- Returns:
- the regression model.
-
regression
static RegressionModel regression(String algorithm, Formula formula, DataFrame data, DataFrame test, Properties params) Trains a regression model.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.test- the optional test data.params- the hyperparameters.- Returns:
- the regression model.
-
regression
static DataFrameRegression regression(String algorithm, Formula formula, DataFrame data, Properties params) Trains a regression model.- Parameters:
algorithm- the learning algorithm.formula- the model formula.data- the training data.params- the hyperparameters.- Returns:
- the regression model.
-