Package smile.stat.distribution
Class BernoulliDistribution
java.lang.Object
smile.stat.distribution.DiscreteDistribution
smile.stat.distribution.BernoulliDistribution
- All Implemented Interfaces:
Serializable
,Distribution
Bernoulli's distribution is a discrete probability distribution, which takes
value 1 with success probability p and value 0 with failure probability
q = 1 - p.
Although Bernoulli distribution belongs to exponential family, we don't implement DiscreteExponentialFamily interface here since it is impossible and meaningless to estimate a mixture of Bernoulli distributions.
- See Also:
-
Field Summary
-
Constructor Summary
ConstructorDescriptionBernoulliDistribution
(boolean[] data) Construct a Bernoulli from the given samples.BernoulliDistribution
(double p) Constructor. -
Method Summary
Modifier and TypeMethodDescriptiondouble
cdf
(double k) Cumulative distribution function.double
entropy()
Returns Shannon entropy of the distribution.static BernoulliDistribution
fit
(int[] data) Estimates the distribution parameters by MLE.int
length()
Returns the number of parameters of the distribution.double
logp
(int k) The probability mass function in log scale.double
mean()
Returns the mean of distribution.double
p
(int k) The probability mass function.double
quantile
(double p) The quantile, the probability to the left of quantile is p.double
rand()
Generates a random number following this distribution.toString()
double
variance()
Returns the variance of distribution.Methods inherited from class smile.stat.distribution.DiscreteDistribution
likelihood, logLikelihood, logp, p, quantile, randi, randi
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface smile.stat.distribution.Distribution
inverseTransformSampling, likelihood, logLikelihood, quantile, quantile, rand, rejectionSampling, sd
-
Field Details
-
Constructor Details
-
BernoulliDistribution
public BernoulliDistribution(double p) Constructor.- Parameters:
p
- the probability of success.
-
BernoulliDistribution
public BernoulliDistribution(boolean[] data) Construct a Bernoulli from the given samples. Parameter will be estimated from the data by MLE.- Parameters:
data
- the boolean array to indicate if the i-th trail success.
-
-
Method Details
-
fit
Estimates the distribution parameters by MLE.- Parameters:
data
- data[i] == 1 if the i-th trail is success. Otherwise, 0.- Returns:
- the distribution.
-
length
public int length()Description copied from interface:Distribution
Returns the number of parameters of the distribution. The "length" is in the sense of the minimum description length principle.- Returns:
- The number of parameters.
-
mean
public double mean()Description copied from interface:Distribution
Returns the mean of distribution.- Returns:
- The mean.
-
variance
public double variance()Description copied from interface:Distribution
Returns the variance of distribution.- Returns:
- The variance.
-
entropy
public double entropy()Description copied from interface:Distribution
Returns Shannon entropy of the distribution.- Returns:
- Shannon entropy.
-
toString
-
rand
public double rand()Description copied from interface:Distribution
Generates a random number following this distribution.- Returns:
- a random number.
-
p
public double p(int k) Description copied from class:DiscreteDistribution
The probability mass function.- Specified by:
p
in classDiscreteDistribution
- Parameters:
k
- a real value.- Returns:
- the probability.
-
logp
public double logp(int k) Description copied from class:DiscreteDistribution
The probability mass function in log scale.- Specified by:
logp
in classDiscreteDistribution
- Parameters:
k
- a real value.- Returns:
- the log probability.
-
cdf
public double cdf(double k) Description copied from interface:Distribution
Cumulative distribution function. That is the probability to the left of x.- Parameters:
k
- a real number.- Returns:
- the probability.
-
quantile
public double quantile(double p) Description copied from interface:Distribution
The quantile, the probability to the left of quantile is p. It is actually the inverse of cdf.- Parameters:
p
- the probability.- Returns:
- the quantile.
-