Serialized Form
-
Package smile.anomaly
-
Class smile.anomaly.IsolationForest
class IsolationForest extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
c
double c
The normalizing factor. -
extensionLevel
int extensionLevel
The extension level, i.e. how many dimension are specified in the random slope. With 0 extension level, it is coincident with the standard Isolation Forest. -
trees
IsolationTree[] trees
Forest of isolation trees.
-
-
Class smile.anomaly.IsolationTree
class IsolationTree extends Object implements Serializable-
Serialized Fields
-
root
smile.anomaly.IsolationTree.Node root
Tree root node.
-
-
-
Class smile.anomaly.SVM
-
-
Package smile.base.cart
-
Class smile.base.cart.CART
class CART extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over the tree gives a simple measure of variable importance. -
maxDepth
int maxDepth
The maximum depth of the tree. -
maxNodes
int maxNodes
The maximum number of leaf nodes in the tree. -
mtry
int mtry
The number of input variables to be used to determine the decision at a node of the tree. -
nodeSize
int nodeSize
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results. -
response
StructField response
The schema of response variable. -
root
Node root
The root of decision tree. -
schema
StructType schema
The schema of predictors.
-
-
Class smile.base.cart.DecisionNode
class DecisionNode extends LeafNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
count
int[] count
The number of node samples in each class. -
output
int output
The predicted output.
-
-
Class smile.base.cart.InternalNode
class InternalNode extends Object implements Serializable-
Serialized Fields
-
-
Class smile.base.cart.LeafNode
class LeafNode extends Object implements Serializable-
Serialized Fields
-
size
int size
The number of samples in the node.
-
-
-
Class smile.base.cart.NominalNode
class NominalNode extends InternalNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
value
int value
The split value.
-
-
Class smile.base.cart.OrdinalNode
class OrdinalNode extends InternalNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
value
double value
The split value.
-
-
Class smile.base.cart.RegressionNode
class RegressionNode extends LeafNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
mean
double mean
The mean of response variable. -
output
double output
The predicted output. In standard regression tree, this is same as the mean. However, in gradient tree boosting, this may be different. -
rss
double rss
The residual sum of squares.
-
-
-
Package smile.base.mlp
-
Class smile.base.mlp.HiddenLayer
class HiddenLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
activation
ActivationFunction activation
The activation function.
-
-
Class smile.base.mlp.InputLayer
class InputLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Class smile.base.mlp.Layer
class Layer extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Serialized Fields
-
bias
double[] bias
The bias. -
dropout
double dropout
The dropout rate. Dropout randomly sets input units to 0 with this rate at each step during training time, which helps prevent overfitting. -
n
int n
The number of neurons in this layer -
p
int p
The number of input variables. -
weight
Matrix weight
The affine transformation matrix.
-
-
Class smile.base.mlp.MultilayerPerceptron
class MultilayerPerceptron extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Serialized Fields
-
clipNorm
double clipNorm
The gradient clipping norm. -
clipValue
double clipValue
The gradient clipping value. -
epsilon
double epsilon
A small constant for numerical stability in RMSProp. -
lambda
double lambda
The L2 regularization factor, which is also the weight decay factor. -
learningRate
TimeFunction learningRate
The learning rate. -
momentum
TimeFunction momentum
The momentum factor. -
net
Layer[] net
The input and hidden layers. -
output
OutputLayer output
The output layer. -
p
int p
The dimensionality of input data. -
rho
double rho
The discounting factor for the history/coming gradient in RMSProp. -
t
int t
The training iterations.
-
-
Class smile.base.mlp.OutputLayer
class OutputLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
activation
OutputFunction activation
The output activation function. -
cost
Cost cost
The cost function.
-
-
-
Package smile.base.rbf
-
Class smile.base.rbf.RBF
class RBF extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
center
T center
The center of neuron. -
distance
Metric<T> distance
Metric distance. -
rbf
RadialBasisFunction rbf
Radial basis function.
-
-
-
Package smile.base.svm
-
Class smile.base.svm.KernelMachine
class KernelMachine extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept. -
kernel
MercerKernel<T> kernel
The kernel function. -
vectors
T[] vectors
The support vectors (or control points). -
w
double[] w
The linear weights.
-
-
Class smile.base.svm.LASVM
class LASVM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
Threshold of decision function. -
Cn
double Cn
The soft margin penalty parameter for negative samples. -
Cp
double Cp
The soft margin penalty parameter for positive samples. -
gmax
double gmax
The gradient of most violating pair. -
gmin
double gmin
The gradient of most violating pair. -
K
double[][] K
The kernel matrix. -
kernel
MercerKernel<T> kernel
The kernel function. -
minmaxflag
boolean minmaxflag
True if minmax() is already called after update. -
svmax
SupportVector<T> svmax
The most violating pair. -
svmin
SupportVector<T> svmin
The most violating pair. -
tol
double tol
The tolerance of convergence test. -
vectors
ArrayList<SupportVector<T>> vectors
Support vectors. -
x
T[] x
The training samples.
-
-
Class smile.base.svm.LinearKernelMachine
class LinearKernelMachine extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept. -
w
double[] w
The weight vector.
-
-
Class smile.base.svm.SupportVector
class SupportVector extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
Lagrangian multiplier of support vector. -
cmax
double cmax
Upper bound of alpha. -
cmin
double cmin
Lower bound of alpha. -
g
double g
Gradient y - Kα. -
i
int i
The index of support vector in training samples. -
k
double k
Kernel value k(x, x) -
x
T x
Support vector.
-
-
-
Package smile.classification
-
Class smile.classification.AbstractClassifier
class AbstractClassifier extends Object implements Serializable-
Serialized Fields
-
classes
IntSet classes
The class labels.
-
-
-
Class smile.classification.AdaBoost
- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double[] alpha
The weight of each decision tree. -
error
double[] error
The weighted error of each decision tree during training. -
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
k
int k
The number of classes. -
trees
DecisionTree[] trees
Forest of decision trees.
-
-
Class smile.classification.ClassLabels
class ClassLabels extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
classes
IntSet classes
The class labels. -
k
int k
The number of classes. -
ni
int[] ni
The number of samples per classes. -
priori
double[] priori
The estimated priori probabilities. -
y
int[] y
The sample class id in [0, k).
-
-
Class smile.classification.DecisionTree
class DecisionTree extends CART implements Serializable- serialVersionUID:
- 2L
-
Class smile.classification.DiscreteNaiveBayes
class DiscreteNaiveBayes extends AbstractClassifier<int[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
fixedPriori
boolean fixedPriori
If true, don't update the priori during learning. -
k
int k
The number of classes. -
logcondprob
double[][] logcondprob
The log conditional probabilities for document classification. -
model
DiscreteNaiveBayes.Model model
The generation model of naive Bayes. -
n
int n
The total number of documents. -
nc
int[] nc
The number of documents in each class. -
nt
int[] nt
The number of terms per class. -
ntc
int[][] ntc
The number of each term per class. -
p
int p
The number of independent variables. -
priori
double[] priori
The priori probability of each class. -
sigma
double sigma
Amount of add-k smoothing of evidence. By default, we use add-one or Laplace smoothing, which simply adds one to each count to eliminate zeros. Add-one smoothing can be interpreted as a uniform prior (each term occurs once for each class) that is then updated as evidence from the training data comes in.
-
-
Class smile.classification.FLD
class FLD extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
k
int k
The number of classes. -
mean
double[] mean
Projected mean vector. -
mu
double[][] mu
Projected class mean vectors. -
p
int p
The dimensionality of data. -
scaling
Matrix scaling
Project matrix.
-
-
Class smile.classification.GradientTreeBoost
- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept for binary classification. -
forest
RegressionTree[][] forest
Forest of regression trees for multi-class classification. -
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance. -
k
int k
The number of classes. -
shrinkage
double shrinkage
The shrinkage parameter in (0, 1] controls the learning rate of procedure. -
trees
RegressionTree[] trees
Forest of regression trees for binary classification.
-
-
Class smile.classification.IsotonicRegressionScaling
class IsotonicRegressionScaling extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
buckets
double[] buckets
The step-wise buckets of function values in ascending order. -
prob
double[] prob
The probability of instances falling into the corresponding buckets.
-
-
Class smile.classification.KNN
- serialVersionUID:
- 2L
-
Class smile.classification.LDA
class LDA extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eigen
double[] eigen
The eigen values of common variance matrix. -
k
int k
The number of classes. -
logppriori
double[] logppriori
The constant term of discriminant function of each class. -
mu
double[][] mu
THe mean vectors of each class. -
p
int p
The dimensionality of data. -
priori
double[] priori
The a priori probabilities of each class. -
scaling
Matrix scaling
The eigen vectors of common covariance matrix, which transforms observations to discriminant functions, normalized so that common covariance matrix is spherical.
-
-
Class smile.classification.LogisticRegression
class LogisticRegression extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.LogisticRegression.Binomial
class Binomial extends LogisticRegression implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.LogisticRegression.Multinomial
class Multinomial extends LogisticRegression implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.Maxent
class Maxent extends AbstractClassifier<int[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.Maxent.Binomial
class Binomial extends Maxent implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.Maxent.Multinomial
class Multinomial extends Maxent implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.MLP
class MLP extends MultilayerPerceptron implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
classes
IntSet classes
The class label encoder. -
k
int k
The number of classes.
-
-
Class smile.classification.NaiveBayes
class NaiveBayes extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
k
int k
The number of classes. -
p
int p
The number of independent variables. -
priori
double[] priori
The priori probability of each class. -
prob
Distribution[][] prob
The conditional distribution for general purpose naive Bayes classifier.
-
-
Class smile.classification.OneVersusOne
- serialVersionUID:
- 2L
-
Serialized Fields
-
classifiers
Classifier<T>[][] classifiers
The binary classifier. -
k
int k
The number of classes. -
platt
PlattScaling[][] platt
The binary classifier.
-
-
Class smile.classification.OneVersusRest
- serialVersionUID:
- 2L
-
Serialized Fields
-
classifiers
Classifier<T>[] classifiers
The binary classifier. -
k
int k
The number of classes. -
platt
PlattScaling[] platt
The probability estimation by Platt scaling.
-
-
Class smile.classification.PlattScaling
class PlattScaling extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
The scaling parameter. -
beta
double beta
The scaling parameter.
-
-
Class smile.classification.QDA
class QDA extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eigen
double[][] eigen
Eigen values of each covariance matrix. -
k
int k
The number of classes. -
logppriori
double[] logppriori
Constant term of discriminant function of each class. -
mu
double[][] mu
Mean vectors of each class. -
p
int p
The dimensionality of data. -
priori
double[] priori
A priori probabilities of each class. -
scaling
Matrix[] scaling
Eigen vectors of each covariance matrix, which transforms observations to discriminant functions, normalized so that within groups covariance matrix is spherical.
-
-
Class smile.classification.RandomForest
- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
k
int k
The number of classes. -
metrics
ClassificationMetrics metrics
The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward). -
models
RandomForest.Model[] models
Forest of decision trees. The second value is the accuracy of tree on the OOB samples, which can be used a weight when aggregating tree votes.
-
-
Class smile.classification.RandomForest.Model
class Model extends Object implements Serializable-
Serialized Fields
-
metrics
ClassificationMetrics metrics
The performance metrics on out-of-bag samples. -
tree
DecisionTree tree
The decision tree. -
weight
double weight
The weight of tree, which can be used when aggregating tree votes.
-
-
-
Class smile.classification.RBFNetwork
- serialVersionUID:
- 2L
-
Class smile.classification.RDA
class RDA extends QDA implements Serializable- serialVersionUID:
- 2L
-
Class smile.classification.SparseLogisticRegression
- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.SparseLogisticRegression.Binomial
class Binomial extends SparseLogisticRegression implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.SparseLogisticRegression.Multinomial
class Multinomial extends SparseLogisticRegression implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.SVM
-
-
Package smile.clustering
-
Class smile.clustering.CentroidClustering
class CentroidClustering extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
centroids
T[] centroids
The centroids of each cluster. -
distortion
double distortion
The total distortion.
-
-
Class smile.clustering.CLARANS
- serialVersionUID:
- 2L
-
Class smile.clustering.DBSCAN
class DBSCAN extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
Class smile.clustering.DENCLUE
class DENCLUE extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
attractors
double[][] attractors
The density attractor of each observation. -
radius
double[] radius
The radius of density attractor. -
samples
double[][] samples
The samples decided by k-means used in the iterations of hill climbing. -
sigma
double sigma
The smooth parameter in the Gaussian kernel. -
tol
double tol
The tolerance of hill-climbing procedure.
-
-
Class smile.clustering.DeterministicAnnealing
class DeterministicAnnealing extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.GMeans
class GMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.HierarchicalClustering
class HierarchicalClustering extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
height
double[] height
A set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration. -
merge
int[][] merge
An n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering. If an element j in the row is less than n, then observation j was merged at this stage. Ifj >= n
then the merge was with the cluster formed at the (earlier) stage j-n of the algorithm.
-
-
Class smile.clustering.KMeans
class KMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.KModes
class KModes extends CentroidClustering<int[],int[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.MEC
class MEC extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Class smile.clustering.PartitionClustering
class PartitionClustering extends Object implements Serializable-
Serialized Fields
-
k
int k
The number of clusters. -
size
int[] size
The number of observations in each cluster. -
y
int[] y
The cluster labels of data.
-
-
-
Class smile.clustering.SIB
class SIB extends CentroidClustering<double[],SparseArray> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.SpectralClustering
class SpectralClustering extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
distortion
double distortion
The distortion in feature space.
-
-
Class smile.clustering.XMeans
class XMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
-
Package smile.data
-
Class smile.data.AbstractTuple
class AbstractTuple extends Object implements Serializable
-
-
Package smile.data.formula
-
Class smile.data.formula.Abs
class Abs extends AbstractFunction implements Serializable -
Class smile.data.formula.AbstractBiFunction
class AbstractBiFunction extends Object implements Serializable -
Class smile.data.formula.AbstractFunction
class AbstractFunction extends Object implements Serializable -
Class smile.data.formula.Add
class Add extends Operator implements Serializable -
Class smile.data.formula.Constant
class Constant extends Object implements Serializable -
Class smile.data.formula.Date
class Date extends Object implements Serializable-
Serialized Fields
-
features
DateFeature[] features
The features to extract. -
name
String name
The name of variable.
-
-
-
Class smile.data.formula.Delete
class Delete extends Object implements Serializable-
Serialized Fields
-
x
Term x
The term to delete.
-
-
-
Class smile.data.formula.Div
class Div extends Operator implements Serializable -
Class smile.data.formula.Dot
class Dot extends Object implements Serializable -
Class smile.data.formula.DoubleFunction
class DoubleFunction extends AbstractFunction implements Serializable-
Serialized Fields
-
lambda
Function lambda
The function on a double.
-
-
-
Class smile.data.formula.FactorCrossing
class FactorCrossing extends Object implements Serializable -
Class smile.data.formula.FactorInteraction
class FactorInteraction extends Object implements Serializable -
Class smile.data.formula.Formula
class Formula extends Object implements Serializable- serialVersionUID:
- 2L
-
Record Class smile.data.formula.Intercept
class Intercept extends Record implements Serializable-
Serialized Fields
-
bias
boolean bias
The field for thebias
record component.
-
-
-
Class smile.data.formula.IntFunction
class IntFunction extends AbstractFunction implements Serializable-
Serialized Fields
-
lambda
IntFunction lambda
The function on an integer.
-
-
-
Class smile.data.formula.Mul
class Mul extends Operator implements Serializable -
Class smile.data.formula.Operator
class Operator extends AbstractBiFunction implements Serializable -
Class smile.data.formula.Round
class Round extends AbstractFunction implements Serializable -
Class smile.data.formula.Sub
class Sub extends Operator implements Serializable -
Record Class smile.data.formula.Variable
class Variable extends Record implements Serializable
-
-
Package smile.data.measure
-
Class smile.data.measure.CategoricalMeasure
class CategoricalMeasure extends Object implements Serializable-
Serialized Fields
-
factor
boolean factor
The flag if the values are of standard factor [0, 1, 2, ..., k). -
level2value
Map<String,
Number> level2value Map a string to an integer level. -
levels
String[] levels
The levels of measurement. -
value2level
Map<Number,
String> value2level Map an integer to string. -
values
int[] values
The valid values.
-
-
-
Class smile.data.measure.IntervalScale
class IntervalScale extends NumericalMeasure implements Serializable -
Class smile.data.measure.NominalScale
class NominalScale extends CategoricalMeasure implements Serializable -
Class smile.data.measure.NumericalMeasure
class NumericalMeasure extends Object implements Serializable-
Serialized Fields
-
format
NumberFormat format
For formatting and parsing numbers.
-
-
-
Class smile.data.measure.OrdinalScale
class OrdinalScale extends CategoricalMeasure implements Serializable -
Class smile.data.measure.RatioScale
class RatioScale extends NumericalMeasure implements Serializable
-
-
Package smile.data.transform
-
Class smile.data.transform.ColumnTransform
class ColumnTransform extends Object implements Serializable -
Class smile.data.transform.InvertibleColumnTransform
class InvertibleColumnTransform extends ColumnTransform implements Serializable
-
-
Package smile.data.type
-
Class smile.data.type.ArrayType
class ArrayType extends Object implements Serializable-
Serialized Fields
-
type
DataType type
Element data type.
-
-
-
Class smile.data.type.BooleanType
class BooleanType extends Object implements Serializable -
Class smile.data.type.ByteType
class ByteType extends Object implements Serializable -
Class smile.data.type.CharType
class CharType extends Object implements Serializable -
Class smile.data.type.DateTimeType
class DateTimeType extends Object implements Serializable-
Serialized Fields
-
formatter
DateTimeFormatter formatter
Date formatter. -
pattern
String pattern
Date format pattern.
-
-
-
Class smile.data.type.DateType
class DateType extends Object implements Serializable-
Serialized Fields
-
formatter
DateTimeFormatter formatter
Date formatter. -
pattern
String pattern
Date format pattern.
-
-
-
Class smile.data.type.DecimalType
class DecimalType extends Object implements Serializable -
Class smile.data.type.DoubleType
class DoubleType extends Object implements Serializable -
Class smile.data.type.FloatType
class FloatType extends Object implements Serializable -
Class smile.data.type.IntegerType
class IntegerType extends Object implements Serializable -
Class smile.data.type.LongType
class LongType extends Object implements Serializable -
Class smile.data.type.ObjectType
class ObjectType extends Object implements Serializable-
Serialized Fields
-
clazz
Class<?> clazz
Object Class.
-
-
-
Class smile.data.type.ShortType
class ShortType extends Object implements Serializable -
Class smile.data.type.StringType
class StringType extends Object implements Serializable -
Class smile.data.type.StructField
class StructField extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.data.type.StructType
class StructType extends Object implements Serializable-
Serialized Fields
-
fields
StructField[] fields
Struct fields. -
index
Map<String,
Integer> index Field name to index map.
-
-
-
Class smile.data.type.TimeType
class TimeType extends Object implements Serializable-
Serialized Fields
-
formatter
DateTimeFormatter formatter
Date formatter. -
pattern
String pattern
Date format pattern.
-
-
-
-
Package smile.data.vector
-
Package smile.deep.activation
-
Class smile.deep.activation.ActivationFunction
class ActivationFunction extends Object implements Serializable-
Serialized Fields
-
inplace
boolean inplace
True if the operation executes in-place. -
module
org.bytedeco.pytorch.Module module
The module of activation function. -
name
String name
The function name.
-
-
-
Class smile.deep.activation.GELU
class GELU extends ActivationFunction implements Serializable -
Class smile.deep.activation.GLU
class GLU extends ActivationFunction implements Serializable -
Class smile.deep.activation.HardShrink
class HardShrink extends ActivationFunction implements Serializable-
Serialized Fields
-
lambda
org.bytedeco.pytorch.Scalar lambda
The lambda value in the formulation.
-
-
-
Class smile.deep.activation.LeakyReLU
class LeakyReLU extends ActivationFunction implements Serializable-
Serialized Fields
-
negativeSlope
org.bytedeco.pytorch.Scalar negativeSlope
Controls the angle of the negative slope.
-
-
-
Class smile.deep.activation.LogSigmoid
class LogSigmoid extends ActivationFunction implements Serializable -
Class smile.deep.activation.LogSoftmax
class LogSoftmax extends ActivationFunction implements Serializable -
Class smile.deep.activation.ReLU
class ReLU extends ActivationFunction implements Serializable -
Class smile.deep.activation.Sigmoid
class Sigmoid extends ActivationFunction implements Serializable -
Class smile.deep.activation.SiLU
class SiLU extends ActivationFunction implements Serializable -
Class smile.deep.activation.Softmax
class Softmax extends ActivationFunction implements Serializable -
Class smile.deep.activation.SoftShrink
class SoftShrink extends ActivationFunction implements Serializable-
Serialized Fields
-
lambda
org.bytedeco.pytorch.Scalar lambda
The lambda value in the formulation.
-
-
-
Class smile.deep.activation.Tanh
class Tanh extends ActivationFunction implements Serializable -
Class smile.deep.activation.TanhShrink
class TanhShrink extends ActivationFunction implements Serializable
-
-
Package smile.feature.extraction
-
Class smile.feature.extraction.BagOfWords
class BagOfWords extends Object implements Serializable-
Serialized Fields
-
binary
boolean binary
True to check if feature words appear in a document instead of their frequencies. -
columns
String[] columns
The input text fields. -
featureIndex
Map<String,
Integer> featureIndex The mapping from feature words to indices. -
schema
StructType schema
The schema of output space. -
tokenizer
Function<String,
String[]> tokenizer The tokenizer of text, which may include additional processing such as filtering stop word, converting to lowercase, stemming, etc. -
words
String[] words
The feature words.
-
-
-
Class smile.feature.extraction.GHA
class GHA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
n
int n
The dimension of input space. -
p
int p
The dimension of feature space. -
r
TimeFunction r
The learning rate; -
t
int t
The training iterations. -
wy
double[] wy
Workspace for W' * y. -
y
double[] y
Workspace for W * x.
-
-
Class smile.feature.extraction.KernelPCA
class KernelPCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
kpca
KPCA<double[]> kpca
Kernel PCA.
-
-
Class smile.feature.extraction.PCA
class PCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
cumulativeProportion
double[] cumulativeProportion
The cumulative proportion of variance contained in principal components. -
eigvalues
double[] eigvalues
Eigenvalues of principal components. -
eigvectors
Matrix eigvectors
The matrix of variable loadings, whose columns contain the eigenvectors. -
mu
double[] mu
The sample mean. -
pmu
double[] pmu
The projected sample mean. -
proportion
double[] proportion
The proportion of variance contained in each principal component.
-
-
Class smile.feature.extraction.ProbabilisticPCA
class ProbabilisticPCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
loading
Matrix loading
The loading matrix. -
mu
double[] mu
The sample mean. -
noise
double noise
The variance of noise part. -
pmu
double[] pmu
The projected sample mean.
-
-
Class smile.feature.extraction.Projection
class Projection extends Object implements Serializable-
Serialized Fields
-
columns
String[] columns
The fields of input space. -
projection
Matrix projection
The projection matrix. The dimension reduced data can be obtained by y = W * x. -
schema
StructType schema
The schema of output space.
-
-
-
Class smile.feature.extraction.RandomProjection
class RandomProjection extends Projection implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.feature.imputation
-
Class smile.feature.imputation.KMedoidsImputer
class KMedoidsImputer extends Object implements Serializable -
Class smile.feature.imputation.KNNImputer
class KNNImputer extends Object implements Serializable -
Class smile.feature.imputation.SimpleImputer
class SimpleImputer extends Object implements Serializable
-
-
Package smile.feature.transform
-
Class smile.feature.transform.Normalizer
class Normalizer extends Object implements Serializable-
Serialized Fields
-
columns
Set<String> columns
The columns to transform. -
norm
Normalizer.Norm norm
The vector norm.
-
-
-
-
Package smile.glm
-
Class smile.glm.GLM
class GLM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double[] beta
The linear weights. -
deviance
double deviance
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)). -
devianceResiduals
double[] devianceResiduals
The deviance residuals. -
df
int df
The degrees of freedom of the residual deviance. -
formula
Formula formula
The symbolic description of the model to be fitted. -
logLikelihood
double logLikelihood
Log-likelihood. -
model
Model model
The model specifications (link function, deviance, etc.). -
mu
double[] mu
The fitted mean values. -
nullDeviance
double nullDeviance
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).The saturated model, also referred to as the full model or maximal model, allows a different mean response for each group of replicates. One can think of the saturated model as having the most general possible mean structure for the data since the means are unconstrained.
The null model assumes that all observations have the same distribution with common parameter. Like the saturated model, the null model does not depend on predictor variables. While the saturated most is the most general model, the null model is the most restricted model.
-
predictors
String[] predictors
The predictors of design matrix. -
ztest
double[][] ztest
The coefficients, their standard errors, z-scores, and p-values.
-
-
-
Package smile.glm.model
-
Package smile.graph
-
Class smile.graph.AdjacencyList
class AdjacencyList extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
digraph
boolean digraph
Is the graph directed? -
graph
LinkedList<Graph.Edge>[] graph
Adjacency list. Non-zero values are the weights of edges.
-
-
Class smile.graph.AdjacencyMatrix
class AdjacencyMatrix extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
digraph
boolean digraph
Is the graph directed? -
graph
double[][] graph
Adjacency matrix. Non-zero values are the weights of edges.
-
-
-
Package smile.hash
-
Class smile.hash.PerfectHash
class PerfectHash extends Object implements Serializable-
Serialized Fields
-
keywords
String[] keywords
The keyword set. -
kvals
int[] kvals
The k parameters to calculate the hash. -
min
char min
The lowest character value shown in the keywords. -
select
int[] select
The character positions in keywords used to calculate the hash. -
table
int[] table
Hash table.
-
-
-
-
Package smile.ica
-
Class smile.ica.Exp
class Exp extends Object implements Serializable -
Class smile.ica.ICA
class ICA extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
components
double[][] components
The independent components (row-wise).
-
-
Class smile.ica.Kurtosis
class Kurtosis extends Object implements Serializable -
Class smile.ica.LogCosh
class LogCosh extends Object implements Serializable
-
-
Package smile.interpolation
-
Class smile.interpolation.AbstractInterpolation
class AbstractInterpolation extends Object implements Serializable-
Serialized Fields
-
cor
boolean cor
The indicator if consecutive calls seem correlated. This variable is used byinterpolate
to decide if to uselocate
orhunt
on the next call, which is invisible to the user. -
dj
int dj
The factor min(1, pow(n, 0.25)) to check if consecutive calls seem correlated. -
jsav
int jsav
The previous search location. -
n
int n
The number of control points. -
xx
double[] xx
The tabulated control points. -
yy
double[] yy
The function values at control points.
-
-
-
Class smile.interpolation.BicubicInterpolation
class BicubicInterpolation extends Object implements Serializable-
Serialized Fields
-
m
int m
The number of control points on the first dimension. -
n
int n
The number of control points on the second dimension. -
x1
double[] x1
The first dimension of tabulated control points. -
x1terp
LinearInterpolation x1terp
To locate the control point in the first dimension. -
x2
double[] x2
The second dimension of tabulated control points. -
x2terp
LinearInterpolation x2terp
To locate the control point in the second dimension. -
y
double[] y
The workspace of function values. -
y1
double[] y1
The workspace of derivatives. -
y12
double[] y12
The workspace of derivatives. -
y2
double[] y2
The workspace of derivatives. -
yv
double[][] yv
The function values at control points.
-
-
-
Class smile.interpolation.BilinearInterpolation
class BilinearInterpolation extends Object implements Serializable-
Serialized Fields
-
x1terp
LinearInterpolation x1terp
To locate the control point in the first dimension. -
x2terp
LinearInterpolation x2terp
To locate the control point in the second dimension. -
y
double[][] y
The function values at xx.
-
-
-
Class smile.interpolation.CubicSplineInterpolation1D
class CubicSplineInterpolation1D extends AbstractInterpolation implements Serializable-
Serialized Fields
-
y2
double[] y2
Second derivatives of the interpolating function at the tabulated points.
-
-
-
Class smile.interpolation.CubicSplineInterpolation2D
class CubicSplineInterpolation2D extends Object implements Serializable-
Serialized Fields
-
m
int m
The number of control points on the first dimension. -
srp
CubicSplineInterpolation1D[] srp
The interpolation along the second dimension on every control point of first dimension. -
x1
double[] x1
The first dimension of tabulated control points. -
yv
double[] yv
The function values at xx.
-
-
-
Class smile.interpolation.KrigingInterpolation1D
class KrigingInterpolation1D extends Object implements Serializable-
Serialized Fields
-
alpha
double alpha
The parameter of power variogram. -
beta
double beta
The parameter of power variogram. -
x
double[] x
The control points. -
yvi
double[] yvi
The linear weights.
-
-
-
Class smile.interpolation.KrigingInterpolation2D
class KrigingInterpolation2D extends Object implements Serializable-
Serialized Fields
-
alpha
double alpha
The parameter of power variogram. -
beta
double beta
The parameter of power variogram. -
x1
double[] x1
The first dimension of tabulated control points. -
x2
double[] x2
The second dimension of tabulated control points. -
yvi
double[] yvi
The linear weights.
-
-
-
Class smile.interpolation.LinearInterpolation
class LinearInterpolation extends AbstractInterpolation implements Serializable -
Class smile.interpolation.RBFInterpolation1D
class RBFInterpolation1D extends Object implements Serializable-
Serialized Fields
-
normalized
boolean normalized
True to fit a normalized rbf interpolation. -
rbf
RadialBasisFunction rbf
The radial basis function. -
w
double[] w
The linear weights. -
x
double[] x
The control points.
-
-
-
Class smile.interpolation.RBFInterpolation2D
class RBFInterpolation2D extends Object implements Serializable-
Serialized Fields
-
normalized
boolean normalized
True to fit a normalized rbf interpolation. -
rbf
RadialBasisFunction rbf
The radial basis function. -
w
double[] w
The linear weights. -
x1
double[] x1
The first dimension of tabulated control points. -
x2
double[] x2
The second dimension of tabulated control points.
-
-
-
Class smile.interpolation.ShepardInterpolation1D
class ShepardInterpolation1D extends Object implements Serializable-
Serialized Fields
-
p
double p
The parameter in the radial basis function. -
x
double[] x
The control points. -
y
double[] y
The function values.
-
-
-
Class smile.interpolation.ShepardInterpolation2D
class ShepardInterpolation2D extends Object implements Serializable-
Serialized Fields
-
p
double p
The parameter in the radial basis function. -
x1
double[] x1
The first dimension of tabulated control points. -
x2
double[] x2
The second dimension of tabulated control points. -
y
double[] y
The function values.
-
-
-
-
Package smile.interpolation.variogram
-
Class smile.interpolation.variogram.ExponentialVariogram
class ExponentialVariogram extends Object implements Serializable-
Serialized Fields
-
a
double a
The range parameter. -
b
double b
The sill parameter. -
c
double c
The nugget effect parameter.
-
-
-
Class smile.interpolation.variogram.GaussianVariogram
class GaussianVariogram extends Object implements Serializable-
Serialized Fields
-
a
double a
The range parameter. -
b
double b
The sill parameter. -
c
double c
The nugget effect parameter.
-
-
-
Class smile.interpolation.variogram.PowerVariogram
class PowerVariogram extends Object implements Serializable-
Serialized Fields
-
alpha
double alpha
The parameter fitted by unweighted least squares on data points. -
beta
double beta
The fixed parameter1 <= beta < 2
. -
nugget
double nugget
The nugget effect parameter.
-
-
-
Class smile.interpolation.variogram.SphericalVariogram
class SphericalVariogram extends Object implements Serializable-
Serialized Fields
-
a
double a
The range parameter. -
b
double b
The sill parameter. -
c
double c
The nugget effect parameter.
-
-
-
-
Package smile.manifold
-
Class smile.manifold.IsoMap
class IsoMap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
AdjacencyList graph
The nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
Class smile.manifold.KPCA
class KPCA extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinates of projected training data. -
data
T[] data
Training data. -
kernel
MercerKernel<T> kernel
Mercer kernel. -
latent
double[] latent
The eigenvalues of kernel principal components. -
mean
double[] mean
The row mean of kernel matrix. -
mu
double mu
The mean of kernel matrix. -
projection
Matrix projection
The projection matrix.
-
-
Class smile.manifold.LaplacianEigenmap
class LaplacianEigenmap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
AdjacencyList graph
Nearest neighbor graph. -
index
int[] index
The original sample index. -
width
double width
The width of heat kernel.
-
-
Class smile.manifold.LLE
class LLE extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
AdjacencyList graph
Nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
Class smile.manifold.TSNE
class TSNE extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
cost
double cost
The cost function value. -
eta
double eta
The learning rate. -
finalMomentum
double finalMomentum
The momentum in later stage. -
gains
double[][] gains
The gain matrix. -
minGain
double minGain
The floor of gain. -
momentum
double momentum
The momentum factor. -
momentumSwitchIter
int momentumSwitchIter
The number of iterations at which switch the momentum to finalMomentum. -
P
double[][] P
The probability matrix of the distances in the input space. -
Q
double[][] Q
The probability matrix of the distances in the feature space. -
Qsum
double Qsum
The sum of Q matrix. -
totalIter
int totalIter
The number of iterations so far.
-
-
Class smile.manifold.UMAP
class UMAP extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
AdjacencyList graph
The nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
-
Package smile.math
-
Class smile.math.Complex
class Complex extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
im
double im
The imaginary part. -
re
double re
The real part.
-
-
Class smile.math.Scaler
class Scaler extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
clip
boolean clip
If true, clip the value in [0, 1]. -
offset
double offset
The scaling factor. -
scale
double scale
The offset.
-
-
-
Package smile.math.distance
-
Class smile.math.distance.ChebyshevDistance
class ChebyshevDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.CorrelationDistance
class CorrelationDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
cor
ToDoubleBiFunction<double[],
double[]> cor Correlation lambda. -
method
String method
The type of correlation is employed.
-
-
Class smile.math.distance.DynamicTimeWarping
class DynamicTimeWarping extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.EditDistance
class EditDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
brf
smile.math.distance.EditDistance.BRF brf
The lambda to calculate FKP array. -
damerau
boolean damerau
Calculate Damerau or basic Levenshitein distance. -
FKP
IntArray2D FKP
Cost matrix. Because Java automatically initialize arrays, it takes O(mn) to declare this cost matrix every time before calculate edit distance. But the whole point of Berghel and Roach algorithm is to calculate fewer cells than O(mn). Therefore, we create this cost matrix here. Therefore, the methods using this cost matrix is not multi-thread safe. -
r
double r
Radius of Sakoe-Chiba band -
weight
IntArray2D weight
Weight matrix for weighted Levenshtein distance.
-
-
Class smile.math.distance.EuclideanDistance
class EuclideanDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
weight
double[] weight
The weights used in weighted distance.
-
-
Class smile.math.distance.HammingDistance
class HammingDistance extends Object implements Serializable -
Class smile.math.distance.JaccardDistance
class JaccardDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.JensenShannonDistance
class JensenShannonDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.LeeDistance
class LeeDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
q
int q
The size of q-ary alphabet.
-
-
Class smile.math.distance.MahalanobisDistance
class MahalanobisDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.ManhattanDistance
class ManhattanDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
weight
double[] weight
The weights used in weighted distance.
-
-
Class smile.math.distance.MinkowskiDistance
class MinkowskiDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
p
int p
The order of Minkowski distance. -
weight
double[] weight
The weights used in weighted distance.
-
-
Class smile.math.distance.SparseChebyshevDistance
class SparseChebyshevDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Class smile.math.distance.SparseEuclideanDistance
class SparseEuclideanDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
weight
double[] weight
The weights used in weighted distance.
-
-
Class smile.math.distance.SparseManhattanDistance
class SparseManhattanDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
weight
double[] weight
The weights used in weighted distance.
-
-
Class smile.math.distance.SparseMinkowskiDistance
class SparseMinkowskiDistance extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
p
int p
The order of Minkowski distance. -
weight
double[] weight
The weights used in weighted distance.
-
-
-
Package smile.math.kernel
-
Class smile.math.kernel.BinarySparseGaussianKernel
class BinarySparseGaussianKernel extends Gaussian implements Serializable -
Class smile.math.kernel.BinarySparseHyperbolicTangentKernel
class BinarySparseHyperbolicTangentKernel extends HyperbolicTangent implements Serializable -
Class smile.math.kernel.BinarySparseLaplacianKernel
class BinarySparseLaplacianKernel extends Laplacian implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.kernel.BinarySparseLinearKernel
class BinarySparseLinearKernel extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.kernel.BinarySparseMaternKernel
class BinarySparseMaternKernel extends Matern implements Serializable -
Class smile.math.kernel.BinarySparsePolynomialKernel
class BinarySparsePolynomialKernel extends Polynomial implements Serializable -
Class smile.math.kernel.BinarySparseThinPlateSplineKernel
class BinarySparseThinPlateSplineKernel extends ThinPlateSpline implements Serializable -
Class smile.math.kernel.Gaussian
class Gaussian extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hi
double hi
The upper bound of length scale for hyperparameter tuning. -
lo
double lo
The lower bound of length scale for hyperparameter tuning. -
sigma
double sigma
The length scale of the kernel.
-
-
Class smile.math.kernel.GaussianKernel
class GaussianKernel extends Gaussian implements Serializable -
Class smile.math.kernel.HellingerKernel
class HellingerKernel extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.kernel.HyperbolicTangent
class HyperbolicTangent extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hi
double[] hi
The upper bound of scale and offset for hyperparameter tuning. -
lo
double[] lo
The lower bound of scale and offset for hyperparameter tuning. -
offset
double offset
The offset parameter. -
scale
double scale
The scale parameter.
-
-
Class smile.math.kernel.HyperbolicTangentKernel
class HyperbolicTangentKernel extends HyperbolicTangent implements Serializable -
Class smile.math.kernel.Laplacian
class Laplacian extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hi
double hi
The upper bound of length scale for hyperparameter tuning. -
lo
double lo
The lower bound of length scale for hyperparameter tuning. -
sigma
double sigma
The length scale of the kernel.
-
-
Class smile.math.kernel.LaplacianKernel
class LaplacianKernel extends Laplacian implements Serializable -
Class smile.math.kernel.LinearKernel
class LinearKernel extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.kernel.Matern
class Matern extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hi
double hi
The upper bound of length scale for hyperparameter tuning. -
lo
double lo
The lower bound of length scale for hyperparameter tuning. -
nu
double nu
The smoothness of the kernel. -
sigma
double sigma
The length scale of the kernel.
-
-
Class smile.math.kernel.MaternKernel
class MaternKernel extends Matern implements Serializable -
Class smile.math.kernel.PearsonKernel
class PearsonKernel extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
C
double C
The coefficient 4 * (2 ^ (1/omega) - 1) / (sigma^2). -
hi
double hi
The upper bound of sigma. -
lo
double lo
The lower bound of sigma. -
omega
double omega
The tailing factor of the peak. -
sigma
double sigma
Pearson width.
-
-
Class smile.math.kernel.Polynomial
class Polynomial extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
degree
int degree
The degree of polynomial. -
hi
double[] hi
The upper bound of scale and offset for hyperparameter tuning. -
lo
double[] lo
The lower bound of scale and offset for hyperparameter tuning. -
offset
double offset
The offset parameter. -
scale
double scale
The scale parameter.
-
-
Class smile.math.kernel.PolynomialKernel
class PolynomialKernel extends Polynomial implements Serializable -
Class smile.math.kernel.ProductKernel
class ProductKernel extends Object implements Serializable-
Serialized Fields
-
k1
MercerKernel<T> k1
The kernel to combine. -
k2
MercerKernel<T> k2
The kernel to combine.
-
-
-
Class smile.math.kernel.SparseGaussianKernel
class SparseGaussianKernel extends Gaussian implements Serializable -
Class smile.math.kernel.SparseHyperbolicTangentKernel
class SparseHyperbolicTangentKernel extends HyperbolicTangent implements Serializable -
Class smile.math.kernel.SparseLaplacianKernel
class SparseLaplacianKernel extends Laplacian implements Serializable -
Class smile.math.kernel.SparseLinearKernel
class SparseLinearKernel extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.kernel.SparseMaternKernel
class SparseMaternKernel extends Matern implements Serializable -
Class smile.math.kernel.SparsePolynomialKernel
class SparsePolynomialKernel extends Polynomial implements Serializable -
Class smile.math.kernel.SparseThinPlateSplineKernel
class SparseThinPlateSplineKernel extends ThinPlateSpline implements Serializable -
Class smile.math.kernel.SumKernel
class SumKernel extends Object implements Serializable-
Serialized Fields
-
k1
MercerKernel<T> k1
The kernel to combine. -
k2
MercerKernel<T> k2
The kernel to combine.
-
-
-
Class smile.math.kernel.ThinPlateSpline
class ThinPlateSpline extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hi
double hi
The upper bound of length scale for hyperparameter tuning. -
lo
double lo
The lower bound of length scale for hyperparameter tuning. -
sigma
double sigma
The length scale of the kernel.
-
-
Class smile.math.kernel.ThinPlateSplineKernel
class ThinPlateSplineKernel extends ThinPlateSpline implements Serializable
-
-
Package smile.math.matrix
-
Class smile.math.matrix.BandMatrix
class BandMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
AB
double[] AB
The band matrix storage. -
kl
int kl
The number of subdiagonal rows. -
ku
int ku
The number of superdiagonal rows. -
ld
int ld
The leading dimension. -
m
int m
The number of rows. -
n
int n
The number of columns. -
uplo
UPLO uplo
The upper or lower triangle of the symmetric band matrix.
-
-
Class smile.math.matrix.BandMatrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
BandMatrix lu
The Cholesky decomposition.
-
-
Class smile.math.matrix.BandMatrix.LU
class LU extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
BandMatrix lu
The LU decomposition.
-
-
Class smile.math.matrix.BigMatrix
class BigMatrix extends IMatrix implements Serializable- serialVersionUID:
- 3L
-
Serialization Methods
-
readObject
Customized object serialization.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
writeObject
Customized object serialization.- Parameters:
out
- the output stream.- Throws:
IOException
- when fails to write to the stream.
-
-
Serialized Fields
-
Class smile.math.matrix.BigMatrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
BigMatrix lu
The Cholesky decomposition.
-
-
Class smile.math.matrix.BigMatrix.EVD
class EVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
Vl
BigMatrix Vl
The left eigenvectors. -
Vr
BigMatrix Vr
The right eigenvectors. -
wi
org.bytedeco.javacpp.DoublePointer wi
The imaginary part of eigenvalues. -
wr
org.bytedeco.javacpp.DoublePointer wr
The real part of eigenvalues. By default, the eigenvalues and eigenvectors are not always in sorted order. Thesort
function puts the eigenvalues in descending order and reorder the corresponding eigenvectors.
-
-
Class smile.math.matrix.BigMatrix.LU
class LU extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
org.bytedeco.javacpp.IntPointer ipiv
The pivot vector. -
lu
BigMatrix lu
The LU decomposition.
-
-
Class smile.math.matrix.BigMatrix.QR
class QR extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
qr
BigMatrix qr
The QR decomposition. -
tau
org.bytedeco.javacpp.DoublePointer tau
The scalar factors of the elementary reflectors
-
-
Class smile.math.matrix.BigMatrix.SVD
class SVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.matrix.IMatrix
class IMatrix extends Object implements Serializable -
Class smile.math.matrix.Matrix
class Matrix extends IMatrix implements Serializable- serialVersionUID:
- 3L
-
Serialized Fields
-
A
double[] A
The matrix storage. -
diag
Diag diag
If not null, the matrix is triangular. The flag specifies if a triangular matrix has unit diagonal elements. -
ld
int ld
The leading dimension. -
m
int m
The number of rows. -
n
int n
The number of columns. -
uplo
UPLO uplo
If not null, the matrix is symmetric or triangular.
-
-
Class smile.math.matrix.Matrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
Matrix lu
The Cholesky decomposition.
-
-
Class smile.math.matrix.Matrix.EVD
class EVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
Vl
Matrix Vl
The left eigenvectors. -
Vr
Matrix Vr
The right eigenvectors. -
wi
double[] wi
The imaginary part of eigenvalues. -
wr
double[] wr
The real part of eigenvalues. By default, the eigenvalues and eigenvectors are not always in sorted order. Thesort
function puts the eigenvalues in descending order and reorder the corresponding eigenvectors.
-
-
Class smile.math.matrix.Matrix.LU
class LU extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
Matrix lu
The LU decomposition.
-
-
Class smile.math.matrix.Matrix.QR
class QR extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
qr
Matrix qr
The QR decomposition. -
tau
double[] tau
The scalar factors of the elementary reflectors
-
-
Class smile.math.matrix.Matrix.SVD
class SVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.matrix.SparseMatrix
class SparseMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
colIndex
int[] colIndex
The index of the start of columns. -
m
int m
The number of rows. -
n
int n
The number of columns. -
nonzeros
double[] nonzeros
The array of nonzero values stored column by column. -
rowIndex
int[] rowIndex
The row indices of nonzero values.
-
-
Class smile.math.matrix.SymmMatrix
class SymmMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
AP
double[] AP
The packed matrix storage. -
n
int n
The number of rows/columns. -
uplo
UPLO uplo
The upper or lower triangle of the symmetric matrix.
-
-
Class smile.math.matrix.SymmMatrix.BunchKaufman
class BunchKaufman extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
SymmMatrix lu
The Bunch–Kaufman decomposition.
-
-
Class smile.math.matrix.SymmMatrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
SymmMatrix lu
The Cholesky decomposition.
-
-
-
Package smile.math.matrix.fp32
-
Class smile.math.matrix.fp32.BandMatrix
class BandMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
AB
float[] AB
The band matrix storage. -
kl
int kl
The number of subdiagonal rows. -
ku
int ku
The number of superdiagonal rows. -
ld
int ld
The leading dimension. -
m
int m
The number of rows. -
n
int n
The number of columns. -
uplo
UPLO uplo
The upper or lower triangle of the symmetric band matrix.
-
-
Class smile.math.matrix.fp32.BandMatrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
BandMatrix lu
The Cholesky decomposition.
-
-
Class smile.math.matrix.fp32.BandMatrix.LU
class LU extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
BandMatrix lu
The LU decomposition.
-
-
Class smile.math.matrix.fp32.IMatrix
class IMatrix extends Object implements Serializable -
Class smile.math.matrix.fp32.Matrix
class Matrix extends IMatrix implements Serializable- serialVersionUID:
- 3L
-
Serialized Fields
-
A
float[] A
The matrix storage. -
diag
Diag diag
If not null, the matrix is triangular. The flag specifies if a triangular matrix has unit diagonal elements. -
ld
int ld
The leading dimension. -
m
int m
The number of rows. -
n
int n
The number of columns. -
uplo
UPLO uplo
If not null, the matrix is symmetric or triangular.
-
-
Class smile.math.matrix.fp32.Matrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
Matrix lu
The Cholesky decomposition.
-
-
Class smile.math.matrix.fp32.Matrix.EVD
class EVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
Vl
Matrix Vl
The left eigenvectors. -
Vr
Matrix Vr
The right eigenvectors. -
wi
float[] wi
The imaginary part of eigenvalues. -
wr
float[] wr
The real part of eigenvalues. By default, the eigenvalues and eigenvectors are not always in sorted order. Thesort
function puts the eigenvalues in descending order and reorder the corresponding eigenvectors.
-
-
Class smile.math.matrix.fp32.Matrix.LU
class LU extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
Matrix lu
The LU decomposition.
-
-
Class smile.math.matrix.fp32.Matrix.QR
class QR extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
qr
Matrix qr
The QR decomposition. -
tau
float[] tau
The scalar factors of the elementary reflectors
-
-
Class smile.math.matrix.fp32.Matrix.SVD
class SVD extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.math.matrix.fp32.SparseMatrix
class SparseMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
colIndex
int[] colIndex
The index of the start of columns. -
m
int m
The number of rows. -
n
int n
The number of columns. -
nonzeros
float[] nonzeros
The array of nonzero values stored column by column. -
rowIndex
int[] rowIndex
The row indices of nonzero values.
-
-
Class smile.math.matrix.fp32.SymmMatrix
class SymmMatrix extends IMatrix implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
AP
float[] AP
The packed matrix storage. -
n
int n
The number of rows/columns. -
uplo
UPLO uplo
The upper or lower triangle of the symmetric matrix.
-
-
Class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
class BunchKaufman extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
info
int info
Ifinfo = 0
, the LU decomposition was successful. Ifinfo = i > 0
, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. -
ipiv
int[] ipiv
The pivot vector. -
lu
SymmMatrix lu
The Bunch–Kaufman decomposition.
-
-
Class smile.math.matrix.fp32.SymmMatrix.Cholesky
class Cholesky extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lu
SymmMatrix lu
The Cholesky decomposition.
-
-
-
Package smile.math.rbf
-
Class smile.math.rbf.GaussianRadialBasis
class GaussianRadialBasis extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
r0
double r0
The scale factor.
-
-
Class smile.math.rbf.InverseMultiquadricRadialBasis
class InverseMultiquadricRadialBasis extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
r02
double r02
The scale factor.
-
-
Class smile.math.rbf.MultiquadricRadialBasis
class MultiquadricRadialBasis extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
r02
double r02
The scale factor.
-
-
Class smile.math.rbf.ThinPlateRadialBasis
class ThinPlateRadialBasis extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
r0
double r0
The scale factor.
-
-
-
Package smile.neighbor
-
Class smile.neighbor.BKTree
class BKTree extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
count
int count
The number of nodes in the tree. -
distance
Metric<K> distance
The distance metric. Note that the metric must be a discrete distance, e.g. edit distance, Hamming distance, Lee distance, Jaccard distance, and taxonomic distance, etc. -
root
BKTree<K,
V>.smile.neighbor.BKTree.Node root The root of BK-tree.
-
-
Class smile.neighbor.CoverTree
class CoverTree extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
base
double base
The base of our expansion constant. In other words the 2 in 2^i used in covering tree and separation invariants of a cover tree. In paper, it's suggested the separation invariant is relaxed in batch construction. -
data
List<V> data
The data objects. -
distance
Metric<K> distance
The distance/metric function for nearest neighbor search. -
invLogBase
double invLogBase
If we have base 2 then this can be viewed as 1/ln(2), which can be used later on to do invLogBase*ln(d) instead of ln(d)/ln(2), to get log2(d), in getScale method. -
keys
List<K> keys
The object keys. -
root
CoverTree<K,
V>.smile.neighbor.CoverTree.Node root The root node.
-
-
Class smile.neighbor.KDTree
class KDTree extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
data
E[] data
The data objects. -
index
int[] index
The index of objects in each node. -
keys
double[][] keys
The object keys. -
root
smile.neighbor.KDTree.Node root
The root node of KD-Tree.
-
-
Class smile.neighbor.LinearSearch
class LinearSearch extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.neighbor.LSH
class LSH extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
data
ArrayList<E> data
The data objects. -
H
int H
The size of hash table. -
hash
List<Hash> hash
Hash functions. -
k
int k
The number of random projections per hash value. -
keys
ArrayList<double[]> keys
The object keys. -
w
double w
The width of projection. The hash function is defined as floor((a * x + b) / w). The value of w determines the bucket interval.
-
-
Class smile.neighbor.MPLSH
- serialVersionUID:
- 2L
-
Serialized Fields
-
model
List<PosterioriModel> model
Pre-computed posteriori lookup table to generate multiple probes.
-
-
Class smile.neighbor.MutableLSH
-
Class smile.neighbor.SNLSH
class SNLSH extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
-
Package smile.neighbor.lsh
-
Class smile.neighbor.lsh.Bucket
class Bucket extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
bucket
int bucket
The bucket id is given by the universal bucket hashing. The id is used instead of the full k-vector (value of the hash function g) describing the bucket. With a high probability all buckets will have different pairs of id's. -
entry
IntArrayList entry
The indices of points that all have the same value for hash function g.
-
-
Class smile.neighbor.lsh.Hash
class Hash extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
a
Matrix a
The random vectors with entries chosen independently from a Gaussian distribution. -
b
double[] b
Real numbers chosen uniformly from the range [0, w]. -
c
int[] c
The random integer used for universal bucket hashing. -
d
int d
The dimensionality of data. -
H
int H
The size of hash table. -
k
int k
The number of random projections per hash value. -
MAX_HASH_RND
int MAX_HASH_RND
The range of universal hashing random integers [0, 229). -
P
int P
The prime number in universal bucket hashing. -
table
Bucket[] table
Hash table. -
w
double w
The width of projection. The hash function is defined as floor((a * x + b) / w). The value of w determines the bucket interval.
-
-
Class smile.neighbor.lsh.MultiProbeHash
class MultiProbeHash extends Hash implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
umax
double[] umax
The maximum values of hashing functions for given dataset. -
umin
double[] umin
The minimum values of hashing functions for given dataset.
-
-
Class smile.neighbor.lsh.PosterioriModel
class PosterioriModel extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
hash
MultiProbeHash hash
The hash function to model. -
lookup
PrH[][][] lookup
The posteriori probabilities lookup table.
-
-
Record Class smile.neighbor.lsh.PrH
class PrH extends Record implements Serializable- serialVersionUID:
- 3L
-
-
Package smile.nlp.pos
-
Class smile.nlp.pos.HMMPOSTagger
class HMMPOSTagger extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
a
double[][] a
First order state transition probabilities. -
b
double[][] b
Symbol emission probabilities. -
c
double[][] c
Suffix emission probabilities. -
pi
double[] pi
Initial state probabilities. -
suffix
Map<String,
Integer> suffix The emission symbol suffix of HMM and corresponding indices. -
symbol
Map<String,
Integer> symbol The emission symbols of HMM and corresponding indices.
-
-
-
Package smile.plot.swing
-
Class smile.plot.swing.Headless
class Headless extends JInternalFrame implements Serializable -
Class smile.plot.swing.PlotGrid
class PlotGrid extends JPanel implements Serializable -
Class smile.plot.swing.PlotPanel
class PlotPanel extends JPanel implements Serializable-
Serialized Fields
-
canvas
Canvas canvas
The canvas of plots. -
contentPane
smile.plot.swing.PlotPanel.JCanvas contentPane
The Swing component to draw the canvas. -
popup
JPopupMenu popup
Right-click popup menu. -
propertyTable
JTable propertyTable
Property table. -
scrollPane
JScrollPane scrollPane
-
toolbar
JToolBar toolbar
Optional toolbar to control plots.
-
-
-
-
Package smile.regression
-
Class smile.regression.GaussianProcessRegression
class GaussianProcessRegression extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
cholesky
Matrix.Cholesky cholesky
The Cholesky decomposition of kernel matrix. -
kernel
MercerKernel<T> kernel
The covariance/kernel function. -
L
double L
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods. -
mean
double mean
The mean of responsible variable. -
noise
double noise
The variance of noise. -
regressors
T[] regressors
The regressors. -
sd
double sd
The standard deviation of responsible variable. -
w
double[] w
The linear weights.
-
-
Class smile.regression.GradientTreeBoost
class GradientTreeBoost extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept. -
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance. -
shrinkage
double shrinkage
The shrinkage parameter in (0, 1] controls the learning rate of procedure. -
trees
RegressionTree[] trees
Forest of regression trees.
-
-
Class smile.regression.KernelMachine
- serialVersionUID:
- 2L
-
Class smile.regression.LinearModel
class LinearModel extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedRSquared
double adjustedRSquared
Adjusted R2. The adjusted R2 has almost same explanation as R2, but it penalizes the statistic as extra variables are included in the model. -
b
double b
The intercept. -
bias
boolean bias
True if the linear weights w includes the intercept. -
df
int df
The degree-of-freedom of residual standard error. -
error
double error
Residual standard error. -
F
double F
The F-statistic of the goodness-of-fit of the model. -
fittedValues
double[] fittedValues
The fitted values. -
formula
Formula formula
Design matrix formula -
p
int p
The dimensionality. -
predictors
String[] predictors
The predictors of design matrix. -
pvalue
double pvalue
The p-value of the goodness-of-fit test of the model. -
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSquared
double RSquared
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
RSS
double RSS
Residual sum of squares. -
schema
StructType schema
The schema of design matrix. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
V
Matrix V
First initialized to the matrix (XTX)-1, it is updated with each new learning instance. -
w
double[] w
The linear weights.
-
-
Class smile.regression.MLP
class MLP extends MultilayerPerceptron implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
scaler
Scaler scaler
The scaling function of output values.
-
-
Class smile.regression.RandomForest
class RandomForest extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
metrics
RegressionMetrics metrics
The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward). -
models
RandomForest.Model[] models
Forest of regression trees.
-
-
Class smile.regression.RandomForest.Model
class Model extends Object implements Serializable-
Serialized Fields
-
metrics
RegressionMetrics metrics
The performance metrics on out-of-bag samples. -
tree
RegressionTree tree
The decision tree.
-
-
-
Class smile.regression.RBFNetwork
class RBFNetwork extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.regression.RegressionTree
class RegressionTree extends CART implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.sequence
-
Class smile.sequence.CRF
class CRF extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
potentials
RegressionTree[][] potentials
The potential functions for each class. -
schema
StructType schema
The schema of (x, s_j). -
shrinkage
double shrinkage
The learning rate.
-
-
Class smile.sequence.CRFLabeler
class CRFLabeler extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.sequence.HMM
class HMM extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.sequence.HMMLabeler
class HMMLabeler extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
model
HMM model
The HMM model. -
ordinal
ToIntFunction<T> ordinal
The lambda returns the ordinal numbers of symbols.
-
-
-
Package smile.stat.distribution
-
Class smile.stat.distribution.BernoulliDistribution
class BernoulliDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
p
double p
Probability of success. -
q
double q
Probability of failure.
-
-
Class smile.stat.distribution.BetaDistribution
class BetaDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
The shape parameter. -
beta
double beta
The shape parameter. -
entropy
double entropy
The entropy. -
mean
double mean
The mean. -
rng
smile.stat.distribution.BetaDistribution.RejectionLogLogistic rng
The random number generator. -
variance
double variance
The variance.
-
-
Class smile.stat.distribution.BinomialDistribution
class BinomialDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
The entropy. -
n
int n
The number of experiments. -
p
double p
The probability of success.
-
-
Class smile.stat.distribution.ChiSquareDistribution
class ChiSquareDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
The entropy. -
fac
double fac
The constant part of log-probability function. -
nu
int nu
The degrees of freedom.
-
-
Class smile.stat.distribution.DiscreteDistribution
class DiscreteDistribution extends Object implements Serializable -
Class smile.stat.distribution.DiscreteExponentialFamilyMixture
class DiscreteExponentialFamilyMixture extends DiscreteMixture implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
bic
double bic
The BIC score when the distribution is fit on a sample data. -
L
double L
The log-likelihood when the distribution is fit on a sample data.
-
-
Class smile.stat.distribution.DiscreteMixture
class DiscreteMixture extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
components
DiscreteMixture.Component[] components
The components of finite mixture model.
-
-
Class smile.stat.distribution.EmpiricalDistribution
class EmpiricalDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
a
int[] a
The workspace of Walker's alias method to generate random samples. -
cdf
double[] cdf
CDF at each x. -
entropy
double entropy
Shannon entropy. -
mean
double mean
The mean value. -
p
double[] p
The probabilities for each x. -
q
double[] q
The workspace of Walker's alias method to generate random samples. -
sd
double sd
The standard deviation. -
variance
double variance
The variance. -
x
IntSet x
The possible values of random variable.
-
-
Class smile.stat.distribution.ExponentialDistribution
class ExponentialDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
lambda
double lambda
The rate parameter.
-
-
Class smile.stat.distribution.ExponentialFamilyMixture
class ExponentialFamilyMixture extends Mixture implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
bic
double bic
The BIC score when the distribution is fit on a sample data. -
L
double L
The log-likelihood when the distribution is fit on a sample data.
-
-
Class smile.stat.distribution.FDistribution
class FDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
fac
double fac
The constant part in the pdf function. -
nu1
int nu1
The degrees of freedom of chi-square distribution in numerator. -
nu2
int nu2
The degrees of freedom chi-square distribution in denominator.
-
-
Class smile.stat.distribution.GammaDistribution
class GammaDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
k
double k
The shape parameter. -
logGammaK
double logGammaK
log(theta * gamma(k)) -
logTheta
double logTheta
log(theta) -
theta
double theta
The scale parameter. -
thetaGammaK
double thetaGammaK
theta * gamma(k)
-
-
Class smile.stat.distribution.GaussianDistribution
class GaussianDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
mu
double mu
The mean. -
pdfConstant
double pdfConstant
The constant factor in PDF. -
sigma
double sigma
The standard deviation. -
variance
double variance
The variance. -
z1
double z1
The Box-Muller algorithm generate a pair of random numbers. z1 is to cache the second one.
-
-
Class smile.stat.distribution.GaussianMixture
class GaussianMixture extends ExponentialFamilyMixture implements Serializable- serialVersionUID:
- 2L
-
Class smile.stat.distribution.GeometricDistribution
class GeometricDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
expDist
ExponentialDistribution expDist
The exponential distribution to generate Geometric distributed random number. -
p
double p
Probability of success on each trial.
-
-
Class smile.stat.distribution.HyperGeometricDistribution
class HyperGeometricDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
m
int m
The number of defects. -
n
int n
The number of draws. -
N
int N
The number of total samples. -
rng
smile.stat.distribution.HyperGeometricDistribution.RandomNumberGenerator rng
The random number generator.
-
-
Class smile.stat.distribution.KernelDensity
class KernelDensity extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
gaussian
GaussianDistribution gaussian
The kernel -- a symmetric but not necessarily positive function that integrates to one. Here we just use Gaussian density function. -
h
double h
h > 0
is a smoothing parameter called the bandwidth. -
mean
double mean
The mean value. -
sd
double sd
The standard deviation. -
variance
double variance
The variance. -
x
double[] x
The samples to estimate the density function.
-
-
Class smile.stat.distribution.LogisticDistribution
class LogisticDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
mu
double mu
The location parameter. -
scale
double scale
The scale parameter.
-
-
Class smile.stat.distribution.LogNormalDistribution
class LogNormalDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
gaussian
GaussianDistribution gaussian
The corresponding Gaussian distribution. -
mean
double mean
The mean. -
mu
double mu
The mean of normal distribution. -
sigma
double sigma
The standard deviation of normal distribution. -
variance
double variance
The variance.
-
-
Class smile.stat.distribution.Mixture
class Mixture extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
components
Mixture.Component[] components
The components of finite mixture model.
-
-
Record Class smile.stat.distribution.Mixture.Component
class Component extends Record implements Serializable-
Serialized Fields
-
distribution
Distribution distribution
The field for thedistribution
record component. -
priori
double priori
The field for thepriori
record component.
-
-
-
Class smile.stat.distribution.MultivariateExponentialFamilyMixture
class MultivariateExponentialFamilyMixture extends MultivariateMixture implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
bic
double bic
The BIC score when the distribution is fit on a sample data. -
L
double L
The log-likelihood when the distribution is fit on a sample data.
-
-
Class smile.stat.distribution.MultivariateGaussianDistribution
class MultivariateGaussianDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
diagonal
boolean diagonal
True if the covariance matrix is diagonal. -
dim
int dim
The dimension. -
length
int length
The number of parameters. -
mu
double[] mu
The mean vector. -
pdfConstant
double pdfConstant
The constant factor in PDF. -
sigma
Matrix sigma
The covariance matrix. -
sigmaDet
double sigmaDet
The determinant of covariance matrix. -
sigmaInv
Matrix sigmaInv
The inverse of covariance matrix. -
sigmaL
Matrix sigmaL
The Cholesky decomposition of covariance matrix.
-
-
Class smile.stat.distribution.MultivariateGaussianMixture
class MultivariateGaussianMixture extends MultivariateExponentialFamilyMixture implements Serializable- serialVersionUID:
- 2L
-
Class smile.stat.distribution.MultivariateMixture
class MultivariateMixture extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
components
MultivariateMixture.Component[] components
The components of finite mixture model.
-
-
Record Class smile.stat.distribution.MultivariateMixture.Component
class Component extends Record implements Serializable-
Serialized Fields
-
distribution
MultivariateDistribution distribution
The field for thedistribution
record component. -
priori
double priori
The field for thepriori
record component.
-
-
-
Class smile.stat.distribution.NegativeBinomialDistribution
class NegativeBinomialDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
p
double p
The success probability in each experiment. -
r
double r
The number of failures until the experiment is stopped.
-
-
Class smile.stat.distribution.PoissonDistribution
class PoissonDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
lambda
double lambda
The average number of events per interval. -
rng
smile.stat.distribution.PoissonDistribution.RandomNumberGenerator rng
The random number generator.
-
-
Class smile.stat.distribution.ShiftedGeometricDistribution
class ShiftedGeometricDistribution extends DiscreteDistribution implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
expDist
ExponentialDistribution expDist
The exponential distribution to generate Geometric distributed random number. -
p
double p
The probability of success.
-
-
Class smile.stat.distribution.TDistribution
class TDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
fac
double fac
The constant factor in PDF. -
np
double np
The constant factor in PDF. -
nu
int nu
The degree of freedom.
-
-
Class smile.stat.distribution.WeibullDistribution
class WeibullDistribution extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
entropy
double entropy
Shannon entropy. -
k
double k
The shape parameter. -
lambda
double lambda
The scale parameter. -
mean
double mean
The mean value. -
variance
double variance
The variance.
-
-
-
Package smile.swing
-
Class smile.swing.Button
class Button extends JButton implements Serializable -
Class smile.swing.FileChooser
class FileChooser extends JFileChooser implements Serializable -
Class smile.swing.FontChooser
class FontChooser extends JComponent implements Serializable-
Serialized Fields
-
dialogResultValue
int dialogResultValue
-
fontFamilyNames
String[] fontFamilyNames
-
fontFamilyTextField
JTextField fontFamilyTextField
-
fontNameList
JList<String> fontNameList
-
fontNamePanel
JPanel fontNamePanel
-
fontSizeList
JList<String> fontSizeList
-
fontSizePanel
JPanel fontSizePanel
-
fontSizeStrings
String[] fontSizeStrings
-
fontSizeTextField
JTextField fontSizeTextField
-
fontStyleList
JList<String> fontStyleList
-
fontStyleNames
String[] fontStyleNames
-
fontStylePanel
JPanel fontStylePanel
-
fontStyleTextField
JTextField fontStyleTextField
-
messageCatalog
ResourceBundle messageCatalog
-
samplePanel
JPanel samplePanel
-
sampleText
JTextField sampleText
-
-
-
Class smile.swing.Table
class Table extends org.jdesktop.swingx.JXTable implements Serializable-
Serialized Fields
-
rowHeader
Table.RowHeader rowHeader
Row header.
-
-
-
Class smile.swing.Table.RowHeader
class RowHeader extends org.jdesktop.swingx.JXTable implements Serializable
-
-
Package smile.swing.table
-
Class smile.swing.table.ButtonCellRenderer
class ButtonCellRenderer extends AbstractCellEditor implements Serializable -
Class smile.swing.table.ByteArrayCellRenderer
class ByteArrayCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.ColorCellEditor
class ColorCellEditor extends AbstractCellEditor implements Serializable-
Serialized Fields
-
button
JButton button
Editor component. -
colorChooser
JColorChooser colorChooser
Color chooser. -
currentColor
Color currentColor
Current color. -
dialog
JDialog dialog
Color chooser dialog.
-
-
-
Class smile.swing.table.ColorCellRenderer
class ColorCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.DateCellEditor
class DateCellEditor extends DefaultCellEditor implements Serializable-
Serialized Fields
-
dateFormat
DateFormat dateFormat
-
textField
JFormattedTextField textField
-
-
-
Class smile.swing.table.DateCellRenderer
class DateCellRenderer extends DefaultTableCellRenderer implements Serializable-
Serialized Fields
-
dateFormat
DateFormat dateFormat
-
-
-
Class smile.swing.table.DefaultTableHeaderCellRenderer
class DefaultTableHeaderCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.DoubleArrayCellEditor
class DoubleArrayCellEditor extends DefaultCellEditor implements Serializable-
Serialized Fields
-
textField
JFormattedTextField textField
-
-
-
Class smile.swing.table.DoubleArrayCellRenderer
class DoubleArrayCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.DoubleCellEditor
class DoubleCellEditor extends DefaultCellEditor implements Serializable-
Serialized Fields
-
doubleFormat
NumberFormat doubleFormat
-
textField
JFormattedTextField textField
-
-
-
Class smile.swing.table.FloatArrayCellRenderer
class FloatArrayCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.FontCellEditor
class FontCellEditor extends AbstractCellEditor implements Serializable-
Serialized Fields
-
button
JButton button
Editor component. -
currentFont
Font currentFont
Current font. -
fontChooser
FontChooser fontChooser
Font chooser.
-
-
-
Class smile.swing.table.FontCellRenderer
class FontCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.IntegerArrayCellEditor
class IntegerArrayCellEditor extends DefaultCellEditor implements Serializable-
Serialized Fields
-
textField
JFormattedTextField textField
-
-
-
Class smile.swing.table.IntegerArrayCellRenderer
class IntegerArrayCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.IntegerCellEditor
class IntegerCellEditor extends DefaultCellEditor implements Serializable-
Serialized Fields
-
integerFormat
NumberFormat integerFormat
-
textField
JFormattedTextField textField
-
-
-
Class smile.swing.table.LongArrayCellRenderer
class LongArrayCellRenderer extends DefaultTableCellRenderer implements Serializable -
Class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
class MultiColumnSortTableHeaderCellRenderer extends DefaultTableHeaderCellRenderer implements Serializable-
Serialized Fields
-
alpha
float alpha
-
-
-
Class smile.swing.table.NumberCellRenderer
class NumberCellRenderer extends DefaultTableCellRenderer implements Serializable-
Serialized Fields
-
numberFormat
NumberFormat numberFormat
Format string.
-
-
-
Class smile.swing.table.PageTableModel
class PageTableModel extends AbstractTableModel implements Serializable-
Serialized Fields
-
firstPageAction
Action firstPageAction
-
gotoPageAction
Action gotoPageAction
-
lastPageAction
Action lastPageAction
-
page
int page
The current page. -
pageCountLabel
JLabel pageCountLabel
-
pageCountLabelFormat
String pageCountLabelFormat
-
pageDownAction
Action pageDownAction
Paging event action. -
pageField
JTextField pageField
-
pageSize
int pageSize
Number of rows per page. -
pageSizeAction
Action pageSizeAction
-
pageSizeField
JTextField pageSizeField
Controls on toolbar. -
pageSizeLabel
JLabel pageSizeLabel
-
pageUpAction
Action pageUpAction
-
toolbar
JToolBar toolbar
Associate toolbar for page control. -
totalRowCountLabel
JLabel totalRowCountLabel
-
totalRowCountLabelFormat
String totalRowCountLabelFormat
-
-
-
Class smile.swing.table.ShortArrayCellRenderer
class ShortArrayCellRenderer extends DefaultTableCellRenderer implements Serializable
-
-
Package smile.swing.text
-
Class smile.swing.text.FloatArrayFormatter
class FloatArrayFormatter extends DefaultFormatter implements Serializable -
Class smile.swing.text.IntegerArrayFormatter
class IntegerArrayFormatter extends DefaultFormatter implements Serializable
-
-
Package smile.taxonomy
-
Class smile.taxonomy.TaxonomicDistance
class TaxonomicDistance extends Object implements Serializable-
Serialized Fields
-
taxonomy
Taxonomy taxonomy
The taxonomy basis to calculate the distance.
-
-
-
-
Package smile.timeseries
-
Class smile.timeseries.AR
class AR extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedR2
double adjustedR2
Adjusted R2. The adjusted R2 has almost same explanation as R2, but it penalizes the statistic as extra variables are included in the model. -
ar
double[] ar
The linear weights of AR. -
b
double b
The intercept. -
df
int df
The degree-of-freedom of residual variance. -
fittedValues
double[] fittedValues
The fitted values. -
mean
double mean
The mean of time series. -
method
AR.Method method
The fitting method. -
p
int p
The order. -
R2
double R2
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSS
double RSS
Residual sum of squares. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
variance
double variance
Estimated variance. -
x
double[] x
The time series.
-
-
Class smile.timeseries.ARMA
class ARMA extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedR2
double adjustedR2
Adjusted R2. The adjusted R2 has almost same explanation as R2, but it penalizes the statistic as extra variables are included in the model. -
ar
double[] ar
The linear weights of AR. -
b
double b
The intercept. -
df
int df
The degree-of-freedom of residual variance. -
fittedValues
double[] fittedValues
The fitted values. -
ma
double[] ma
The linear weights of MA. -
mean
double mean
The mean of time series. -
p
int p
The order of AR. -
q
int q
The order of MA. -
R2
double R2
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSS
double RSS
Residual sum of squares. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
variance
double variance
Estimated variance. -
x
double[] x
The time series.
-
-
-
Package smile.util
-
Class smile.util.DoubleArrayList
class DoubleArrayList extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
data
double[] data
The data of the list. -
size
int size
The index after the last entry in the list.
-
-
Class smile.util.IntArrayList
class IntArrayList extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
data
int[] data
The data of the list. -
size
int size
The index after the last entry in the list.
-
-
Class smile.util.IntSet
class IntSet extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.util.SparseArray
class SparseArray extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
index
IntArrayList index
The index of nonzero entries. -
value
DoubleArrayList value
The value of nonzero entries.
-
-
-
Package smile.validation
-
Record Class smile.validation.Bag
class Bag extends Record implements Serializable- serialVersionUID:
- 3L
-
Record Class smile.validation.ClassificationMetrics
class ClassificationMetrics extends Record implements Serializable- serialVersionUID:
- 3L
-
Serialized Fields
-
accuracy
double accuracy
The field for theaccuracy
record component. -
auc
double auc
The field for theauc
record component. -
crossentropy
double crossentropy
The field for thecrossentropy
record component. -
error
int error
The field for theerror
record component. -
f1
double f1
The field for thef1
record component. -
fitTime
double fitTime
The field for thefitTime
record component. -
logloss
double logloss
The field for thelogloss
record component. -
mcc
double mcc
The field for themcc
record component. -
precision
double precision
The field for theprecision
record component. -
scoreTime
double scoreTime
The field for thescoreTime
record component. -
sensitivity
double sensitivity
The field for thesensitivity
record component. -
size
int size
The field for thesize
record component. -
specificity
double specificity
The field for thespecificity
record component.
-
-
Class smile.validation.ClassificationValidation
class ClassificationValidation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
confusion
ConfusionMatrix confusion
The confusion matrix. -
metrics
ClassificationMetrics metrics
The classification metrics. -
model
M model
The model. -
posteriori
double[][] posteriori
The posteriori probability of prediction if the model is a soft classifier. -
prediction
int[] prediction
The model prediction. -
truth
int[] truth
The true class labels of validation data.
-
-
Class smile.validation.ClassificationValidations
class ClassificationValidations extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
avg
ClassificationMetrics avg
The average of metrics. -
rounds
List<ClassificationValidation<M>> rounds
The multiple round validations. -
sd
ClassificationMetrics sd
The standard deviation of metrics.
-
-
Record Class smile.validation.RegressionMetrics
class RegressionMetrics extends Record implements Serializable- serialVersionUID:
- 3L
-
Serialized Fields
-
fitTime
double fitTime
The field for thefitTime
record component. -
mad
double mad
The field for themad
record component. -
mse
double mse
The field for themse
record component. -
r2
double r2
The field for ther2
record component. -
rmse
double rmse
The field for thermse
record component. -
rss
double rss
The field for therss
record component. -
scoreTime
double scoreTime
The field for thescoreTime
record component. -
size
int size
The field for thesize
record component.
-
-
Class smile.validation.RegressionValidation
class RegressionValidation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
metrics
RegressionMetrics metrics
The regression metrics. -
model
M model
The model. -
prediction
double[] prediction
The model prediction. -
truth
double[] truth
The true response variable of validation data.
-
-
Class smile.validation.RegressionValidations
class RegressionValidations extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
avg
RegressionMetrics avg
The average of metrics. -
rounds
List<RegressionValidation<M>> rounds
The multiple round validations. -
sd
RegressionMetrics sd
The standard deviation of metrics.
-
-
-
Package smile.validation.metric
-
Class smile.validation.metric.Accuracy
class Accuracy extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.AdjustedMutualInformation
class AdjustedMutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
method
AdjustedMutualInformation.Method method
The normalization method.
-
-
Class smile.validation.metric.AdjustedRandIndex
class AdjustedRandIndex extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.AUC
class AUC extends Object implements Serializable- serialVersionUID:
- 2L
-
Record Class smile.validation.metric.ConfusionMatrix
class ConfusionMatrix extends Record implements Serializable- serialVersionUID:
- 3L
-
Serialized Fields
-
matrix
int[][] matrix
The field for thematrix
record component.
-
-
Class smile.validation.metric.Error
class Error extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Fallout
class Fallout extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.FDR
class FDR extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.FScore
class FScore extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double beta
A positive value such that F-score measures the effectiveness of retrieval with respect to a user who attaches β times as much importance to recall as precision. The default value 1.0 corresponds to F1-score. -
strategy
Averaging strategy
The aggregating strategy for multi-classes.
-
-
Class smile.validation.metric.LogLoss
class LogLoss extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MAD
class MAD extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MatthewsCorrelation
class MatthewsCorrelation extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MSE
class MSE extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MutualInformation
class MutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.NormalizedMutualInformation
class NormalizedMutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
method
NormalizedMutualInformation.Method method
The normalization method.
-
-
Class smile.validation.metric.Precision
class Precision extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
strategy
Averaging strategy
The aggregating strategy for multi-classes.
-
-
Class smile.validation.metric.R2
class R2 extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.RandIndex
class RandIndex extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Recall
class Recall extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
strategy
Averaging strategy
The aggregating strategy for multi-classes.
-
-
Class smile.validation.metric.RMSE
class RMSE extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.RSS
class RSS extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Sensitivity
class Sensitivity extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Specificity
class Specificity extends Object implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.vq
-
Class smile.vq.BIRCH
class BIRCH extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
B
int B
The branching factor of non-leaf nodes. -
d
int d
The dimensionality of data. -
L
int L
The number of CF entries in the leaf nodes. -
root
smile.vq.BIRCH.Node root
The root of CF tree. -
T
double T
THe maximum radius of a sub-cluster.
-
-
Class smile.vq.GrowingNeuralGas
class GrowingNeuralGas extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
Decrease error variables by multiplying them with alpha during inserting a new neuron. -
beta
double beta
Decrease all error variables by multiply them with beta. -
d
int d
The dimensionality of signals. -
edgeLifetime
int edgeLifetime
The maximum age of edges. -
epsBest
double epsBest
The learning rate to update best matching neuron. -
epsNeighbor
double epsNeighbor
The learning rate to update neighbors of best matching neuron. -
lambda
int lambda
If the number of input signals so far is an integer multiple of lambda, insert a new neuron. -
neurons
ArrayList<Neuron> neurons
Neurons in the neural network. -
t
int t
The number of signals processed so far. -
top2
Neuron[] top2
The workspace to find nearest neighbors.
-
-
Class smile.vq.NeuralGas
class NeuralGas extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
TimeFunction alpha
The learning rate function. -
dist
double[] dist
The distance between a new observation to neurons. -
eps
double eps
The threshold to update neuron ifalpha * theta > eps
. -
graph
AdjacencyMatrix graph
The network of neurons. -
lifetime
TimeFunction lifetime
The lifetime of connections. -
neurons
smile.vq.NeuralGas.Neuron[] neurons
The neurons. -
t
int t
The current iteration. -
theta
TimeFunction theta
The neighborhood function.
-
-
Class smile.vq.NeuralMap
class NeuralMap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double beta
Decrease the freshness of all neurons by multiply them with beta. -
edgeLifetime
int edgeLifetime
The maximum age of edges. -
epsBest
double epsBest
The learning rate to update nearest neuron. -
epsNeighbor
double epsNeighbor
The learning to update neighbors of nearest neuron. -
neurons
ArrayList<Neuron> neurons
Neurons in the neural network. -
r
double r
The distance radius to activate a neuron for a given signal. -
t
int t
The number of signals processed so far. -
top2
Neuron[] top2
The workspace to find nearest neighbors.
-
-
Class smile.vq.SOM
class SOM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
TimeFunction alpha
The learning rate function. -
dist
double[] dist
The distance between a new observation to neurons. -
map
smile.vq.SOM.Neuron[][] map
The lattice of neurons. -
ncol
int ncol
The number of columns in the lattice. -
neurons
smile.vq.SOM.Neuron[] neurons
The neurons in linear array. -
nrow
int nrow
The number of rows in the lattice. -
t
int t
The current iteration. -
theta
Neighborhood theta
The neighborhood function. -
tol
double tol
The threshold to update neuron ifalpha * theta > eps
.
-
-
-
Package smile.vq.hebb
-
Class smile.vq.hebb.Edge
class Edge extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
age
int age
The age of the edges. -
neighbor
Neuron neighbor
The neighbor neuron.
-
-
Class smile.vq.hebb.Neuron
class Neuron extends Object implements Serializable- serialVersionUID:
- 2L
-