smile.math
Mathematical and statistical functions.
Attributes
Members list
Packages
Distance functions.
Distance functions.
Attributes
Type members
Classlikes
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class AbsMatrixclass AcosMatrixclass AsinMatrixclass AtanMatrixclass CbrtMatrixclass CeilMatrixclass ExpMatrixclass Expm1Matrixclass FloorMatrixclass Log10Matrixclass Log1pMatrixclass Log2Matrixclass LogMatrixclass MatrixAddMatrixclass MatrixAddValueclass MatrixDivMatrixclass MatrixDivValueclass MatrixLiftclass MatrixMulMatrixclass MatrixMulValueclass MatrixMultiplicationclass MatrixSubMatrixclass MatrixSubValueclass MatrixTransposeclass RoundMatrixclass SinMatrixclass SqrtMatrixclass TanMatrixclass TanhMatrixclass ValueAddMatrixclass ValueDivMatrixclass ValueMulMatrixclass ValueSubMatrixShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Optimizes the order of matrix multiplication chain. Matrix multiplication is associative. However, the complexity of matrix multiplication chain is not associative.
Optimizes the order of matrix multiplication chain. Matrix multiplication is associative. However, the complexity of matrix multiplication chain is not associative.
Value parameters
- dims
-
Matrix A[i] has dimension dims[i-1] x dims[i] for i = 1..n
Attributes
- Supertypes
-
trait LazyLoggingclass Objecttrait Matchableclass Any
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait MatrixExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Vector Expression.
Vector Expression.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class AbsVectorclass AcosVectorclass AsinVectorclass AtanVectorclass Axclass CbrtVectorclass CeilVectorclass ExpVectorclass Expm1Vectorclass FloorVectorclass Log10Vectorclass Log1pVectorclass Log2Vectorclass LogVectorclass RoundVectorclass SinVectorclass SqrtVectorclass TanVectorclass TanhVectorclass ValueAddVectorclass ValueDivVectorclass ValueMulVectorclass ValueSubVectorclass VectorAddValueclass VectorAddVectorclass VectorDivValueclass VectorDivVectorclass VectorLiftclass VectorMulValueclass VectorMulVectorclass VectorSubValueclass VectorSubVectorShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait VectorExpressionclass Objecttrait Matchableclass AnyShow all
Value members
Concrete methods
The beta function, also called the Euler integral of the first kind.
The beta function, also called the Euler integral of the first kind.
B(x, y) = ∫01 tx-1 (1-t)y-1dt
for x, y > 0 and the integration is over [0,1].The beta function is symmetric, i.e. B(x,y) = B(y,x).
Attributes
One-sample chisq test. Given the array x containing the observed numbers of events, and an array prob containing the expected probabilities of events, and given the number of constraints (normally one), a small value of p-value indicates a significant difference between the distributions.
One-sample chisq test. Given the array x containing the observed numbers of events, and an array prob containing the expected probabilities of events, and given the number of constraints (normally one), a small value of p-value indicates a significant difference between the distributions.
Attributes
Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence. The rows of contingency table are labels by the values of one nominal variable, the columns are labels by the values of the other nominal variable, and whose entries are non-negative integers giving the number of observed events for each combination of row and column. Continuity correction will be applied when computing the test statistic for 2x2 tables: one half is subtracted from all |O-E| differences. The correlation coefficient is calculated as Cramer's V.
Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence. The rows of contingency table are labels by the values of one nominal variable, the columns are labels by the values of the other nominal variable, and whose entries are non-negative integers giving the number of observed events for each combination of row and column. Continuity correction will be applied when computing the test statistic for 2x2 tables: one half is subtracted from all |O-E| differences. The correlation coefficient is calculated as Cramer's V.
Attributes
Two-sample chisq test. Given the arrays x and y, containing two sets of binned data, and given one constraint, a small value of p-value indicates a significant difference between two distributions.
Two-sample chisq test. Given the arrays x and y, containing two sets of binned data, and given one constraint, a small value of p-value indicates a significant difference between two distributions.
Attributes
Cholesky decomposition.
Cholesky decomposition.
Attributes
Cholesky decomposition.
Cholesky decomposition.
Attributes
Cholesky decomposition.
Cholesky decomposition.
Attributes
Returns the determinant of matrix.
Returns the determinant of matrix.
Attributes
Returns the determinant of matrix.
Returns the determinant of matrix.
Attributes
Returns the diagonal elements of matrix.
Returns the diagonal elements of matrix.
Attributes
The digamma function is defined as the logarithmic derivative of the gamma function.
The digamma function is defined as the logarithmic derivative of the gamma function.
Attributes
Returns eigen values.
Returns eigen values.
Attributes
Returns eigen values.
Returns eigen values.
Attributes
Eigen decomposition.
Eigen decomposition.
Attributes
Eigen decomposition.
Eigen decomposition.
Attributes
Returns k largest eigenvectors.
Returns k largest eigenvectors.
Attributes
The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics, materials science, and partial differential equations. It is defined as:
The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics, materials science, and partial differential equations. It is defined as:
erf(x) = ∫0x e-t2dt
The complementary error function, denoted erfc, is defined as erfc(x) = 1 - erf(x). The error function and complementary error function are special cases of the incomplete gamma function.
Attributes
The complementary error function.
The complementary error function.
Attributes
The complementary error function with fractional error everywhere less than 1.2 × 10-7. This concise routine is faster than erfc.
The complementary error function with fractional error everywhere less than 1.2 × 10-7. This concise routine is faster than erfc.
Attributes
Returns an n-by-n identity matrix.
Returns an n-by-n identity matrix.
Attributes
Returns an m-by-n identity matrix.
Returns an m-by-n identity matrix.
Attributes
Test if the arrays x and y have significantly different variances. Small values of p-value indicate that the two arrays have significantly different variances.
Test if the arrays x and y have significantly different variances. Small values of p-value indicate that the two arrays have significantly different variances.
Attributes
Gamma function. Lanczos approximation (6 terms).
Gamma function. Lanczos approximation (6 terms).
Attributes
Returns the inverse of matrix.
Returns the inverse of matrix.
Attributes
Returns the inverse of matrix.
Returns the inverse of matrix.
Attributes
The inverse complementary error function.
The inverse complementary error function.
Attributes
Kendall rank correlation test. The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant. It is used with non-parametric data. The p-value is calculated by approximation, which is good for n > 10.
Kendall rank correlation test. The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant. It is used with non-parametric data. The p-value is calculated by approximation, which is good for n > 10.
Attributes
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from the given distribution. The array x is modified by being sorted into ascending order.
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from the given distribution. The array x is modified by being sorted into ascending order.
Attributes
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from that of y. The arrays x and y are modified by being sorted into ascending order.
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from that of y. The arrays x and y are modified by being sorted into ascending order.
Attributes
log of the Gamma function. Lanczos approximation (6 terms)
log of the Gamma function. Lanczos approximation (6 terms)
Attributes
LU decomposition.
LU decomposition.
Attributes
LU decomposition.
LU decomposition.
Attributes
Returns an n-by-n matrix of all ones.
Returns an n-by-n matrix of all ones.
Attributes
Returns an m-by-n matrix of all ones.
Returns an m-by-n matrix of all ones.
Attributes
Pearson correlation coefficient test.
Pearson correlation coefficient test.
Attributes
QR decomposition.
QR decomposition.
Attributes
QR decomposition.
QR decomposition.
Attributes
Returns an m-by-n matrix of uniform distributed random numbers.
Returns an m-by-n matrix of uniform distributed random numbers.
Attributes
Returns an m-by-n matrix of normally distributed random numbers.
Returns an m-by-n matrix of normally distributed random numbers.
Attributes
Returns the rank of matrix.
Returns the rank of matrix.
Attributes
Spearman rank correlation coefficient test. The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (ie. when variables are ordinal). It can be used when there is non-parametric data and hence Pearson cannot be used.
Spearman rank correlation coefficient test. The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (ie. when variables are ordinal). It can be used when there is non-parametric data and hence Pearson cannot be used.
The raw scores are converted to ranks and the differences between the ranks of each observation on the two variables are calculated.
The p-value is calculated by approximation, which is good for n > 10.
Attributes
SVD decomposition.
SVD decomposition.
Attributes
SVD decomposition.
SVD decomposition.
Attributes
Returns k largest singular vectors.
Returns k largest singular vectors.
Attributes
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis. Small values of p-value indicate that the array has significantly different mean.
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis. Small values of p-value indicate that the array has significantly different mean.
Attributes
Given the paired arrays x and y, test if they have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.
Given the paired arrays x and y, test if they have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.
Attributes
Test if the arrays x and y have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.
Test if the arrays x and y have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.
Value parameters
- equalVariance
-
true if the data arrays are assumed to be drawn from populations with the same true variance. Otherwise, The data arrays are allowed to be drawn from populations with unequal variances.