fpgrowth

fun fpgrowth(minSupport: Int, itemsets: Array<IntArray>): Stream<ItemSet>

Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form. The FP-growth algorithm is currently one of the fastest approaches to discover frequent item sets. FP-growth adopts a divide-and-conquer approach to decompose both the mining tasks and the databases. It uses a pattern fragment growth method to avoid the costly process of candidate generation and testing used by Apriori.

The basic idea of the FP-growth algorithm can be described as a recursive elimination scheme: in a preprocessing step delete all items from the transactions that are not frequent individually, i.e., do not appear in a user-specified minimum number of transactions. Then select all transactions that contain the least frequent item (least frequent among those that are frequent) and delete this item from them. Recurse to process the obtained reduced (also known as projected) database, remembering that the item sets found in the recursion share the deleted item as a prefix. On return, remove the processed item from the database of all transactions and start over, i.e., process the second frequent item etc. In these processing steps the prefix tree, which is enhanced by links between the branches, is exploited to quickly find the transactions containing a given item and also to remove this item from the transactions after it has been processed.

Return

the stream of frequent item sets.

Parameters

itemsets

the item set database. Each row is a item set, which may have different length. The item identifiers have to be in [0, n), where n is the number of items. Item set should NOT contain duplicated items. Note that it is reordered after the call.

minSupport

the required minimum support of item sets in terms of frequency.


fun fpgrowth(tree: FPTree): Stream<ItemSet>

Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form. The FP-growth algorithm is currently one of the fastest approaches to discover frequent item sets. FP-growth adopts a divide-and-conquer approach to decompose both the mining tasks and the databases. It uses a pattern fragment growth method to avoid the costly process of candidate generation and testing used by Apriori.

The basic idea of the FP-growth algorithm can be described as a recursive elimination scheme: in a preprocessing step delete all items from the transactions that are not frequent individually, i.e., do not appear in a user-specified minimum number of transactions. Then select all transactions that contain the least frequent item (least frequent among those that are frequent) and delete this item from them. Recurse to process the obtained reduced (also known as projected) database, remembering that the item sets found in the recursion share the deleted item as a prefix. On return, remove the processed item from the database of all transactions and start over, i.e., process the second frequent item etc. In these processing steps the prefix tree, which is enhanced by links between the branches, is exploited to quickly find the transactions containing a given item and also to remove this item from the transactions after it has been processed.

Return

the stream of frequent item sets.

Parameters

tree

the FP-tree of item set database.