Interface Transform
public interface Transform
Transformation from image to tensor.
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final float[]The default mean value of pixel RGB after normalized to [0, 1].static final float[]The default standard deviation of pixel RGB after normalized to [0, 1]. -
Method Summary
Modifier and TypeMethodDescriptionstatic Transformclassification(int cropSize, int resizeSize) Returns a transform for image classification.static Transformclassification(int cropSize, int resizeSize, float[] mean, float[] std, int hints) Returns a transform for image classification.default BufferedImagecrop(BufferedImage image, int size, boolean deep) Crops an image.default BufferedImagecrop(BufferedImage image, int width, int height, boolean deep) Crops an image.forward(BufferedImage... images) Transforms images to 4-D tensor with shape [samples, channels, height, width].default BufferedImageresize(BufferedImage image, int size, int hints) Resizes an image and keeps the aspect ratio.default TensortoTensor(float[] mean, float[] std, BufferedImage... images) Returns the tensor with NCHW shape [samples, channels, height, width] of the images.
-
Field Details
-
DEFAULT_MEAN
static final float[] DEFAULT_MEANThe default mean value of pixel RGB after normalized to [0, 1]. Calculated on ImageNet data. -
DEFAULT_STD
static final float[] DEFAULT_STDThe default standard deviation of pixel RGB after normalized to [0, 1]. Calculated on ImageNet data.
-
-
Method Details
-
forward
Transforms images to 4-D tensor with shape [samples, channels, height, width].- Parameters:
images- the input images.- Returns:
- the 4-D tensor representation of images.
-
resize
Resizes an image and keeps the aspect ratio.- Parameters:
image- the input image.size- the image size of the shorter side.hints- flags to indicate the type of algorithm to use for image resampling. See SCALE_DEFAULT, SCALE_FAST, SCALE_SMOOTH, SCALE_REPLICATE, SCALE_AREA_AVERAGING of java.awt.Image class.- Returns:
- the output image.
-
crop
Crops an image.- Parameters:
image- the image size.size- the cropped image size.deep- If false, the returned BufferedImage shares the same data array as the original image. Otherwise, returns a deep copy.- Returns:
- the cropped image.
-
crop
Crops an image. The returned BufferedImage shares the same data array as the original image.- Parameters:
image- the image size.width- the cropped image width.height- the cropped image height.deep- If false, the returned BufferedImage shares the same data array as the original image. Otherwise, returns a deep copy.- Returns:
- the cropped image.
-
toTensor
Returns the tensor with NCHW shape [samples, channels, height, width] of the images. The values of tensor are first rescaled to [0.0, 1.0] and then normalized.- Parameters:
mean- the normalization mean.std- the normalization standard deviation.images- the input images that should have same size.- Returns:
- the output tensor.
-
classification
Returns a transform for image classification. The images are resized using scaling hints, followed by a central crop. Finally, the values are first rescaled to [0.0, 1.0] and then normalized.- Parameters:
cropSize- the crop size.resizeSize- the scaling size.- Returns:
- a transform for image classification.
-
classification
Returns a transform for image classification. The images are resized using scaling hints, followed by a central crop. Finally, the values are first rescaled to [0.0, 1.0] and then normalized.- Parameters:
cropSize- the crop size.resizeSize- the scaling size.mean- the normalization mean.std- the normalization standard deviation.hints- the scaling hints.- Returns:
- a transform for image classification.
-