Class Precision

java.lang.Object
smile.validation.metric.Precision
All Implemented Interfaces:
Serializable, ToDoubleBiFunction<int[],int[]>, ClassificationMetric

public class Precision extends Object implements ClassificationMetric
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
    PPV = TP / (TP + FP)
See Also:
  • Field Details

    • instance

      public static final Precision instance
      Default instance.
  • Constructor Details

    • Precision

      public Precision()
      Constructor.
    • Precision

      public Precision(Averaging strategy)
      Constructor.
      Parameters:
      strategy - The aggregating strategy for multi-classes.
  • Method Details

    • score

      public double score(int[] truth, int[] prediction)
      Description copied from interface: ClassificationMetric
      Returns a score to measure the quality of classification.
      Specified by:
      score in interface ClassificationMetric
      Parameters:
      truth - the true class labels.
      prediction - the predicted class labels.
      Returns:
      the metric.
    • toString

      public String toString()
      Overrides:
      toString in class Object
    • of

      public static double of(int[] truth, int[] prediction)
      Calculates the precision of binary classification.
      Parameters:
      truth - the ground truth.
      prediction - the prediction.
      Returns:
      the metric.
    • of

      public static double of(int[] truth, int[] prediction, Averaging strategy)
      Calculates the precision.
      Parameters:
      truth - the ground truth.
      prediction - the prediction.
      strategy - The aggregating strategy for multi-classes.
      Returns:
      the metric.