Class ShiftedGeometricDistribution
java.lang.Object
smile.stat.distribution.DiscreteDistribution
smile.stat.distribution.ShiftedGeometricDistribution
- All Implemented Interfaces:
Serializable, DiscreteExponentialFamily, Distribution
public class ShiftedGeometricDistribution
extends DiscreteDistribution
implements DiscreteExponentialFamily
The "shifted" geometric distribution is a discrete probability distribution
of the number of failures before the first success, supported on the set
{0, 1, 2, 3, …}.
If the probability of success on each trial is p, then the probability that
the k-th trial (out of k trials) is the first success is
Pr(X = k) = (1 - p)k p- See Also:
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoublecdf(double k) Cumulative distribution function.doubleentropy()Returns Shannon entropy of the distribution.static ShiftedGeometricDistributionfit(int[] data) Estimates the distribution parameters by MLE.intlength()Returns the number of parameters of the distribution.doublelogp(int k) The probability mass function in log scale.M(int[] x, double[] posteriori) The M step in the EM algorithm, which depends on the specific distribution.doublemean()Returns the mean of distribution.doublep(int k) The probability mass function.doublequantile(double p) The quantile, the probability to the left of quantile is p.doublerand()Generates a random number following this distribution.doublesd()Returns the standard deviation of distribution.toString()doublevariance()Returns the variance of distribution.Methods inherited from class DiscreteDistribution
likelihood, logLikelihood, logp, p, quantile, randi, randiMethods inherited from class Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface Distribution
inverseTransformSampling, likelihood, logLikelihood, quantile, quantile, rand, rejectionSampling
-
Field Details
-
p
public final double pThe probability of success.
-
-
Constructor Details
-
ShiftedGeometricDistribution
public ShiftedGeometricDistribution(double p) Constructor.- Parameters:
p- the probability of success.
-
-
Method Details
-
fit
Estimates the distribution parameters by MLE.- Parameters:
data- the training data.- Returns:
- the distribution.
-
length
public int length()Description copied from interface:DistributionReturns the number of parameters of the distribution. The "length" is in the sense of the minimum description length principle.- Specified by:
lengthin interfaceDistribution- Returns:
- The number of parameters.
-
mean
public double mean()Description copied from interface:DistributionReturns the mean of distribution.- Specified by:
meanin interfaceDistribution- Returns:
- The mean.
-
variance
public double variance()Description copied from interface:DistributionReturns the variance of distribution.- Specified by:
variancein interfaceDistribution- Returns:
- The variance.
-
sd
public double sd()Description copied from interface:DistributionReturns the standard deviation of distribution.- Specified by:
sdin interfaceDistribution- Returns:
- The standard deviation.
-
entropy
public double entropy()Description copied from interface:DistributionReturns Shannon entropy of the distribution.- Specified by:
entropyin interfaceDistribution- Returns:
- Shannon entropy.
-
toString
-
rand
public double rand()Description copied from interface:DistributionGenerates a random number following this distribution.- Specified by:
randin interfaceDistribution- Returns:
- a random number.
-
p
public double p(int k) Description copied from class:DiscreteDistributionThe probability mass function.- Specified by:
pin classDiscreteDistribution- Parameters:
k- a real value.- Returns:
- the probability.
-
logp
public double logp(int k) Description copied from class:DiscreteDistributionThe probability mass function in log scale.- Specified by:
logpin classDiscreteDistribution- Parameters:
k- a real value.- Returns:
- the log probability.
-
cdf
public double cdf(double k) Description copied from interface:DistributionCumulative distribution function. That is the probability to the left of x.- Specified by:
cdfin interfaceDistribution- Parameters:
k- a real number.- Returns:
- the probability.
-
quantile
public double quantile(double p) Description copied from interface:DistributionThe quantile, the probability to the left of quantile is p. It is actually the inverse of cdf.- Specified by:
quantilein interfaceDistribution- Parameters:
p- the probability.- Returns:
- the quantile.
-
M
Description copied from interface:DiscreteExponentialFamilyThe M step in the EM algorithm, which depends on the specific distribution.- Specified by:
Min interfaceDiscreteExponentialFamily- Parameters:
x- the input data for estimationposteriori- the posteriori probability.- Returns:
- the (unnormalized) weight of this distribution in the mixture.
-