Class LogNormalDistribution
java.lang.Object
smile.stat.distribution.LogNormalDistribution
- All Implemented Interfaces:
Serializable, Distribution
A log-normal distribution is a probability distribution of a random variable
whose logarithm is normally distributed. The log-normal distribution is the
single-tailed probability distribution of any random variable whose logarithm
is normally distributed. If X is a random variable with a normal distribution,
then Y = exp(X) has a log-normal distribution; likewise, if Y is log-normally
distributed, then log(Y) is normally distributed.
A variable might be modeled as log-normal if it can be thought of as
the multiplicative product of many independent random variables each of
which is positive.
- See Also:
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoublecdf(double x) Cumulative distribution function.doubleentropy()Returns Shannon entropy of the distribution.static LogNormalDistributionfit(double[] data) Estimates the distribution parameters by MLE.intlength()Returns the number of parameters of the distribution.doublelogp(double x) The density at x in log scale, which may prevents the underflow problem.doublemean()Returns the mean of distribution.doublep(double x) The probability density function for continuous distribution or probability mass function for discrete distribution at x.doublequantile(double p) The quantile, the probability to the left of quantile is p.doublerand()Generates a random number following this distribution.toString()doublevariance()Returns the variance of distribution.Methods inherited from class Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface Distribution
inverseTransformSampling, likelihood, logLikelihood, quantile, quantile, rand, rejectionSampling, sd
-
Field Details
-
mu
public final double muThe mean of normal distribution. -
sigma
public final double sigmaThe standard deviation of normal distribution. -
mean
public final double meanThe mean.
-
-
Constructor Details
-
LogNormalDistribution
public LogNormalDistribution(double mu, double sigma) Constructor.- Parameters:
mu- the mean of normal distribution.sigma- the standard deviation of normal distribution.
-
-
Method Details
-
fit
Estimates the distribution parameters by MLE.- Parameters:
data- the training data.- Returns:
- the distribution.
-
length
public int length()Description copied from interface:DistributionReturns the number of parameters of the distribution. The "length" is in the sense of the minimum description length principle.- Specified by:
lengthin interfaceDistribution- Returns:
- The number of parameters.
-
mean
public double mean()Description copied from interface:DistributionReturns the mean of distribution.- Specified by:
meanin interfaceDistribution- Returns:
- The mean.
-
variance
public double variance()Description copied from interface:DistributionReturns the variance of distribution.- Specified by:
variancein interfaceDistribution- Returns:
- The variance.
-
entropy
public double entropy()Description copied from interface:DistributionReturns Shannon entropy of the distribution.- Specified by:
entropyin interfaceDistribution- Returns:
- Shannon entropy.
-
toString
-
rand
public double rand()Description copied from interface:DistributionGenerates a random number following this distribution.- Specified by:
randin interfaceDistribution- Returns:
- a random number.
-
p
public double p(double x) Description copied from interface:DistributionThe probability density function for continuous distribution or probability mass function for discrete distribution at x.- Specified by:
pin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the density.
-
logp
public double logp(double x) Description copied from interface:DistributionThe density at x in log scale, which may prevents the underflow problem.- Specified by:
logpin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the log density.
-
cdf
public double cdf(double x) Description copied from interface:DistributionCumulative distribution function. That is the probability to the left of x.- Specified by:
cdfin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the probability.
-
quantile
public double quantile(double p) Description copied from interface:DistributionThe quantile, the probability to the left of quantile is p. It is actually the inverse of cdf.- Specified by:
quantilein interfaceDistribution- Parameters:
p- the probability.- Returns:
- the quantile.
-