Class FDistribution
java.lang.Object
smile.stat.distribution.FDistribution
- All Implemented Interfaces:
Serializable, Distribution
F-distribution arises in the testing of whether two observed samples have
the same variance. A random variate of the F-distribution arises as the
ratio of two chi-squared variates.
- See Also:
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoublecdf(double x) Cumulative distribution function.doubleentropy()Shannon's entropy.intlength()Returns the number of parameters of the distribution.doublelogp(double x) The density at x in log scale, which may prevents the underflow problem.doublemean()Returns the mean of distribution.doublep(double x) The probability density function for continuous distribution or probability mass function for discrete distribution at x.doublequantile(double p) The quantile, the probability to the left of quantile is p.doublerand()Generates a random number following this distribution.toString()doublevariance()Returns the variance of distribution.Methods inherited from class Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface Distribution
inverseTransformSampling, likelihood, logLikelihood, quantile, quantile, rand, rejectionSampling, sd
-
Field Details
-
nu1
public final int nu1The degrees of freedom of chi-square distribution in numerator. -
nu2
public final int nu2The degrees of freedom chi-square distribution in denominator.
-
-
Constructor Details
-
FDistribution
public FDistribution(int nu1, int nu2) Constructor.- Parameters:
nu1- the degree of freedom of chi-square distribution in numerator.nu2- the degree of freedom of chi-square distribution in denominator.
-
-
Method Details
-
length
public int length()Description copied from interface:DistributionReturns the number of parameters of the distribution. The "length" is in the sense of the minimum description length principle.- Specified by:
lengthin interfaceDistribution- Returns:
- The number of parameters.
-
mean
public double mean()Description copied from interface:DistributionReturns the mean of distribution.- Specified by:
meanin interfaceDistribution- Returns:
- The mean.
-
variance
public double variance()Description copied from interface:DistributionReturns the variance of distribution.- Specified by:
variancein interfaceDistribution- Returns:
- The variance.
-
entropy
public double entropy()Shannon's entropy. Not supported.- Specified by:
entropyin interfaceDistribution- Returns:
- Shannon entropy.
-
toString
-
rand
public double rand()Description copied from interface:DistributionGenerates a random number following this distribution.- Specified by:
randin interfaceDistribution- Returns:
- a random number.
-
p
public double p(double x) Description copied from interface:DistributionThe probability density function for continuous distribution or probability mass function for discrete distribution at x.- Specified by:
pin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the density.
-
logp
public double logp(double x) Description copied from interface:DistributionThe density at x in log scale, which may prevents the underflow problem.- Specified by:
logpin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the log density.
-
cdf
public double cdf(double x) Description copied from interface:DistributionCumulative distribution function. That is the probability to the left of x.- Specified by:
cdfin interfaceDistribution- Parameters:
x- a real number.- Returns:
- the probability.
-
quantile
public double quantile(double p) Description copied from interface:DistributionThe quantile, the probability to the left of quantile is p. It is actually the inverse of cdf.- Specified by:
quantilein interfaceDistribution- Parameters:
p- the probability.- Returns:
- the quantile.
-