Class Scaler
java.lang.Object
smile.math.Scaler
- All Implemented Interfaces:
 Serializable, Function
- 
Field Summary
 - 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptiondoublef(double x) Computes the value of the function at x.doubleinv(double x) Computes the value of the inverse function at x.static Scalerminmax(double[] data) Returns the scaler that map the values into the range [0, 1].static ScalerReturns the scaler.static Scalerstandardizer(double[] data) Returns the standardize scaler to 0 mean and unit variance.static Scalerstandardizer(double[] data, boolean robust) Returns the standardize scaler to 0 mean and unit variance.static Scalerwinsor(double[] data) Returns the scaler that map the values into the range [0, 1].static Scalerwinsor(double[] data, double lower, double upper) Returns the scaler that map the values into the range [0, 1]. 
- 
Constructor Details
- 
Scaler
public Scaler(double scale, double offset, boolean clip) Constructor.- Parameters:
 scale- the scaling factor.offset- the offset.clip- if true, clip the value in [0, 1].
 
 - 
 - 
Method Details
- 
f
 - 
inv
 - 
minmax
Returns the scaler that map the values into the range [0, 1].- Parameters:
 data- the training data.- Returns:
 - the scaler.
 
 - 
winsor
Returns the scaler that map the values into the range [0, 1]. The values greater than the 95% percentile are replaced with the upper limit, and those below the 5% percentile are replace with the lower limit.- Parameters:
 data- the training data.- Returns:
 - the scaler.
 
 - 
winsor
Returns the scaler that map the values into the range [0, 1]. The values greater than the specified upper limit are replaced with the upper limit, and those below the lower limit are replace with the lower limit.- Parameters:
 data- the training data.lower- the lower limit in terms of percentiles of the original distribution (e.g. 5th percentile).upper- the upper limit in terms of percentiles of the original distribution (e.g. 95th percentile).- Returns:
 - the scaler.
 
 - 
standardizer
Returns the standardize scaler to 0 mean and unit variance.- Parameters:
 data- The training data.- Returns:
 - the scaler.
 
 - 
standardizer
Returns the standardize scaler to 0 mean and unit variance.- Parameters:
 data- The training data.robust- If true, scale by subtracting the median and dividing by the IQR.- Returns:
 - the scaler.
 
 - 
of
 
 -