Class SimpleImputer
java.lang.Object
smile.feature.imputation.SimpleImputer
- All Implemented Interfaces:
 Serializable, Function<Tuple,Tuple>, Transform 
- 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptionApplies this transform to the given argument.static SimpleImputerFits the missing value imputation values.static SimpleImputerFits the missing value imputation values.static booleanhasMissing(Tuple x) Return true if the tuple x has missing values.static double[][]impute(double[][] data) Impute the missing values with column averages.toString() 
- 
Constructor Details
- 
SimpleImputer
 
 - 
 - 
Method Details
- 
hasMissing
Return true if the tuple x has missing values.- Parameters:
 x- a tuple.- Returns:
 - true if the tuple x has missing values.
 
 - 
apply
 - 
apply
 - 
toString
 - 
fit
Fits the missing value imputation values. Impute all the numeric columns with median, boolean/nominal columns with mode, and text columns with empty string.- Parameters:
 data- the training data.columns- the columns to impute. If empty, impute all the applicable columns.- Returns:
 - the imputer.
 
 - 
fit
Fits the missing value imputation values. Impute all the numeric columns with the mean of values in the range [lower, upper], boolean/nominal columns with mode, and text columns with empty string.- Parameters:
 data- the training data.lower- the lower limit in terms of percentiles of the original distribution (e.g. 5th percentile).upper- the upper limit in terms of percentiles of the original distribution (e.g. 95th percentile).columns- the columns to impute. If empty, impute all the applicable columns.- Returns:
 - the imputer.
 
 - 
impute
public static double[][] impute(double[][] data) Impute the missing values with column averages.- Parameters:
 data- data with missing values.- Returns:
 - the imputed data.
 - Throws:
 IllegalArgumentException- when the whole row or column is missing.
 
 -