Record Class RandomForest.Options
java.lang.Object
java.lang.Record
smile.classification.RandomForest.Options
- Record Components:
ntrees- the number of trees.mtry- the number of input variables to be used to determine the decision at a node of the tree. p/3 generally give good performance, where p is the number of variables.rule- Decision tree split rule.maxDepth- the maximum depth of the tree.maxNodes- the maximum number of leaf nodes in the tree.nodeSize- the minimum size of leaf nodes. Setting nodeSize = 5 generally gives good results.subsample- the sampling rate for training tree. 1.0 means sampling with replacement.< 1.0means sampling without replacement.classWeight- Priors of the classes. The weight of each class is roughly the ratio of samples in each class. For example, if there are 400 positive samples and 100 negative samples, the classWeight should be [1, 4] (assuming label 0 is of negative, label 1 is of positive).seeds- optional RNG seeds for each decision tree.controller- the optional training controller.
- Enclosing class:
RandomForest
public static record RandomForest.Options(int ntrees, int mtry, SplitRule rule, int maxDepth, int maxNodes, int nodeSize, double subsample, int[] classWeight, long[] seeds, IterativeAlgorithmController<RandomForest.TrainingStatus> controller)
extends Record
Random forest hyperparameters.
-
Constructor Summary
ConstructorsConstructorDescriptionOptions(int ntrees) Constructor.Options(int ntrees, int mtry, int maxDepth, int maxNodes, int nodeSize) Constructor.Options(int ntrees, int mtry, SplitRule rule, int maxDepth, int maxNodes, int nodeSize, double subsample, int[] classWeight, long[] seeds, IterativeAlgorithmController<RandomForest.TrainingStatus> controller) Constructor. -
Method Summary
Modifier and TypeMethodDescriptionint[]Returns the value of theclassWeightrecord component.Returns the value of thecontrollerrecord component.final booleanIndicates whether some other object is "equal to" this one.final inthashCode()Returns a hash code value for this object.intmaxDepth()Returns the value of themaxDepthrecord component.intmaxNodes()Returns the value of themaxNodesrecord component.intmtry()Returns the value of themtryrecord component.intnodeSize()Returns the value of thenodeSizerecord component.intntrees()Returns the value of thentreesrecord component.static RandomForest.Optionsof(Properties props) Returns the options from properties.rule()Returns the value of therulerecord component.long[]seeds()Returns the value of theseedsrecord component.doubleReturns the value of thesubsamplerecord component.Returns the persistent set of hyperparameters.final StringtoString()Returns a string representation of this record class.
-
Constructor Details
-
Options
public Options(int ntrees, int mtry, SplitRule rule, int maxDepth, int maxNodes, int nodeSize, double subsample, int[] classWeight, long[] seeds, IterativeAlgorithmController<RandomForest.TrainingStatus> controller) Constructor. -
Options
public Options(int ntrees) Constructor.- Parameters:
ntrees- the number of trees.
-
Options
public Options(int ntrees, int mtry, int maxDepth, int maxNodes, int nodeSize) Constructor.- Parameters:
ntrees- the number of trees.mtry- the number of input variables to be used to determine the decision at a node of the tree. p/3 generally give good performance, where p is the number of variables.maxDepth- the maximum depth of the tree.maxNodes- the maximum number of leaf nodes in the tree.nodeSize- the minimum size of leaf nodes. Setting nodeSize = 5 generally gives good results.
-
-
Method Details
-
toProperties
Returns the persistent set of hyperparameters.- Returns:
- the persistent set.
-
of
Returns the options from properties.- Parameters:
props- the hyperparameters.- Returns:
- the options.
-
toString
-
hashCode
-
equals
Indicates whether some other object is "equal to" this one. The objects are equal if the other object is of the same class and if all the record components are equal. Reference components are compared withObjects::equals(Object,Object); primitive components are compared with thecomparemethod from their corresponding wrapper classes. -
ntrees
-
mtry
-
rule
-
maxDepth
-
maxNodes
-
nodeSize
-
subsample
-
classWeight
public int[] classWeight()Returns the value of theclassWeightrecord component.- Returns:
- the value of the
classWeightrecord component
-
seeds
-
controller
Returns the value of thecontrollerrecord component.- Returns:
- the value of the
controllerrecord component
-