Class ElasticNet

java.lang.Object
smile.regression.ElasticNet

public class ElasticNet extends Object
Elastic Net regularization. The elastic net is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and ridge methods.

The elastic net problem can be reduced to a lasso problem on modified data and response. And note that the penalty function of Elastic Net is strictly convex so there is a unique global minimum, even if input data matrix is not full rank.

References

  1. Kevin P. Murphy: Machine Learning A Probabilistic Perspective, Section 13.5.3, 2012
  2. Zou, Hui, Hastie, Trevor: Regularization and Variable Selection via the Elastic Net, 2005
  • Constructor Details

    • ElasticNet

      public ElasticNet()
  • Method Details

    • fit

      public static LinearModel fit(Formula formula, DataFrame data, Properties params)
      Fits an Elastic Net model.
      Parameters:
      formula - a symbolic description of the model to be fitted.
      data - the data frame of the explanatory and response variables. NO NEED to include a constant column of 1s for bias.
      params - the hyper-parameters.
      Returns:
      the model.
    • fit

      public static LinearModel fit(Formula formula, DataFrame data, double lambda1, double lambda2)
      Fits an Elastic Net model. The hyper-parameters in prop include
      • lambda1 is the L1 shrinkage/regularization parameter
      • lambda2 is the L2 shrinkage/regularization parameter
      • tolerance is the tolerance for stopping iterations (relative target duality gap).
      • iterations is the maximum number of IPM (Newton) iterations.
      Parameters:
      formula - a symbolic description of the model to be fitted.
      data - the data frame of the explanatory and response variables. NO NEED to include a constant column of 1s for bias.
      lambda1 - the L1 shrinkage/regularization parameter
      lambda2 - the L2 shrinkage/regularization parameter
      Returns:
      the model.
    • fit

      public static LinearModel fit(Formula formula, DataFrame data, double lambda1, double lambda2, double tol, int maxIter)
      Fits an Elastic Net model. The hyper-parameters in prop include
      • lambda1 is the L1 shrinkage/regularization parameter
      • lambda2 is the L2 shrinkage/regularization parameter
      • tolerance is the tolerance for stopping iterations (relative target duality gap).
      • iterations is the maximum number of IPM (Newton) iterations.
      Parameters:
      formula - a symbolic description of the model to be fitted.
      data - the data frame of the explanatory and response variables. NO NEED to include a constant column of 1s for bias.
      lambda1 - the L1 shrinkage/regularization parameter
      lambda2 - the L2 shrinkage/regularization parameter
      tol - the tolerance for stopping iterations (relative target duality gap).
      maxIter - the maximum number of IPM (Newton) iterations.
      Returns:
      the model.