Package smile.math.special
Class Beta
java.lang.Object
smile.math.special.Beta
The beta function, also called the Euler integral of the first kind.
B(x, y) = ∫01 tx-1 (1-t)y-1dt
for x, y > 0
and the integration is over [0, 1].
The beta function is symmetric, i.e. B(x, y) = B(y, x)
.
-
Method Summary
Modifier and TypeMethodDescriptionstatic double
beta
(double x, double y) Beta function, also called the Euler integral of the first kind.static double
inverseRegularizedIncompleteBetaFunction
(double alpha, double beta, double p) Inverse of regularized incomplete beta function.static double
regularizedIncompleteBetaFunction
(double alpha, double beta, double x) Regularized Incomplete Beta function.
-
Method Details
-
beta
public static double beta(double x, double y) Beta function, also called the Euler integral of the first kind. The beta function is symmetric, i.e. B(x,y)==B(y,x).- Parameters:
x
-x > 0
y
-y > 0
- Returns:
- the function value.
-
regularizedIncompleteBetaFunction
public static double regularizedIncompleteBetaFunction(double alpha, double beta, double x) Regularized Incomplete Beta function. The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function of a random variable X following a binomial distribution.The implementation employs the continued fraction approximation (see Numerical Recipes).
- Parameters:
alpha
-alpha > 0
beta
-beta > 0
x
-x > 0
- Returns:
- the function value.
-
inverseRegularizedIncompleteBetaFunction
public static double inverseRegularizedIncompleteBetaFunction(double alpha, double beta, double p) Inverse of regularized incomplete beta function.- Parameters:
alpha
-alpha > 0
beta
-beta > 0
p
-0 <= p <= 1
- Returns:
- the function value.
-