# Class KrigingInterpolation2D

java.lang.Object
smile.interpolation.KrigingInterpolation2D
All Implemented Interfaces:
`Serializable`, `Interpolation2D`

public class KrigingInterpolation2D extends Object implements Interpolation2D
Kriging interpolation for the data points irregularly distributed in space. Kriging belongs to the family of linear least squares estimation algorithms, also known as Gauss-Markov estimation or Gaussian process regression. This class implements ordinary kriging for interpolation with power variogram.
• ## Constructor Summary

Constructors
Constructor
Description
```KrigingInterpolation2D(double[] x1, double[] x2, double[] y)```
Constructor.
```KrigingInterpolation2D(double[] x1, double[] x2, double[] y, double beta)```
Constructor.
• ## Method Summary

Modifier and Type
Method
Description
`double`
```interpolate(double x1, double x2)```
Interpolate the data at a given 2-dimensional point.
`String`
`toString()`

### Methods inherited from class java.lang.Object

`clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait`
• ## Constructor Details

• ### KrigingInterpolation2D

public KrigingInterpolation2D(double[] x1, double[] x2, double[] y)
Constructor. The power variogram is employed for interpolation.
Parameters:
`x1` - the 1st dimension of data points.
`x2` - the 2nd dimension of data points.
`y` - the function values at `(x1, x2)`.
• ### KrigingInterpolation2D

public KrigingInterpolation2D(double[] x1, double[] x2, double[] y, double beta)
Constructor. The power variogram is employed for interpolation.
Parameters:
`x1` - the 1st dimension of data points.
`x2` - the 2nd dimension of data points.
`y` - the function values at `(x1, x2)`.
`beta` - the parameter of power variogram. The value of β should be in the range `1 <=` β `< 2`. A good general choice is 1.5, but for functions with a strong linear trend, we may experiment with values as large as 1.99.
• ## Method Details

• ### interpolate

public double interpolate(double x1, double x2)
Description copied from interface: `Interpolation2D`
Interpolate the data at a given 2-dimensional point.
Specified by:
`interpolate` in interface `Interpolation2D`
Parameters:
`x1` - the 1st dimension value.
`x2` - the 2nd dimension value.
Returns:
the interpolated function value.
• ### toString

public String toString()
Overrides:
`toString` in class `Object`