Trait

smile.mds

Operators

Related Doc: package mds

Permalink

trait Operators extends AnyRef

High level multi-dimensional scaling operators.

Linear Supertypes
AnyRef, Any
Type Hierarchy
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Operators
  2. AnyRef
  3. Any
Implicitly
  1. by any2stringadd
  2. by StringFormat
  3. by Ensuring
  4. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def +(other: String): String

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to any2stringadd[Operators] performed by method any2stringadd in scala.Predef.
    Definition Classes
    any2stringadd
  4. def ->[B](y: B): (Operators, B)

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to ArrowAssoc[Operators] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @inline()
  5. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def ensuring(cond: (Operators) ⇒ Boolean, msg: ⇒ Any): Operators

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to Ensuring[Operators] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  9. def ensuring(cond: (Operators) ⇒ Boolean): Operators

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to Ensuring[Operators] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  10. def ensuring(cond: Boolean, msg: ⇒ Any): Operators

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to Ensuring[Operators] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  11. def ensuring(cond: Boolean): Operators

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to Ensuring[Operators] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def formatted(fmtstr: String): String

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to StringFormat[Operators] performed by method StringFormat in scala.Predef.
    Definition Classes
    StringFormat
    Annotations
    @inline()
  16. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. def isomds(proximity: Array[Array[Double]], k: Int, tol: Double = 0.0001, maxIter: Int = 200): IsotonicMDS

    Permalink

    Kruskal's nonmetric MDS.

    Kruskal's nonmetric MDS. In non-metric MDS, only the rank order of entries in the proximity matrix (not the actual dissimilarities) is assumed to contain the significant information. Hence, the distances of the final configuration should as far as possible be in the same rank order as the original data. Note that a perfect ordinal re-scaling of the data into distances is usually not possible. The relationship is typically found using isotonic regression.

    proximity

    the nonnegative proximity matrix of dissimilarities. The diagonal should be zero and all other elements should be positive and symmetric.

    k

    the dimension of the projection.

    tol

    tolerance for stopping iterations.

    maxIter

    maximum number of iterations.

  20. def mds(proximity: Array[Array[Double]], k: Int, add: Boolean = false): MDS

    Permalink

    Classical multidimensional scaling, also known as principal coordinates analysis.

    Classical multidimensional scaling, also known as principal coordinates analysis. Given a matrix of dissimilarities (e.g. pairwise distances), MDS finds a set of points in low dimensional space that well-approximates the dissimilarities in A. We are not restricted to using a Euclidean distance metric. However, when Euclidean distances are used MDS is equivalent to PCA.

    proximity

    the nonnegative proximity matrix of dissimilarities. The diagonal should be zero and all other elements should be positive and symmetric. For pairwise distances matrix, it should be just the plain distance, not squared.

    k

    the dimension of the projection.

    add

    true to estimate an appropriate constant to be added to all the dissimilarities, apart from the self-dissimilarities, that makes the learning matrix positive semi-definite. The other formulation of the additive constant problem is as follows. If the proximity is measured in an interval scale, where there is no natural origin, then there is not a sympathy of the dissimilarities to the distances in the Euclidean space used to represent the objects. In this case, we can estimate a constant c such that proximity + c may be taken as ratio data, and also possibly to minimize the dimensionality of the Euclidean space required for representing the objects.

  21. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  24. def sammon(proximity: Array[Array[Double]], k: Int, lambda: Double = 0.2, tol: Double = 0.0001, maxIter: Int = 100): SammonMapping

    Permalink

    The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.

    The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object. Two points close together in the high-dimensional space should appear close together in the projection, while two points far apart in the high dimensional space should appear far apart in the projection. The Sammon's mapping is a special case of metric least-square multidimensional scaling.

    Ideally when we project from a high dimensional space to a low dimensional space the image would be geometrically congruent to the original figure. This is called an isometric projection. Unfortunately it is rarely possible to isometrically project objects down into lower dimensional spaces. Instead of trying to achieve equality between corresponding inter-point distances we can minimize the difference between corresponding inter-point distances. This is one goal of the Sammon's mapping algorithm. A second goal of the Sammon's mapping algorithm is to preserve the topology as best as possible by giving greater emphasize to smaller interpoint distances. The Sammon's mapping algorithm has the advantage that whenever it is possible to isometrically project an object into a lower dimensional space it will be isometrically projected into the lower dimensional space. But whenever an object cannot be projected down isometrically the Sammon's mapping projects it down to reduce the distortion in interpoint distances and to limit the change in the topology of the object.

    The projection cannot be solved in a closed form and may be found by an iterative algorithm such as gradient descent suggested by Sammon. Kohonen also provides a heuristic that is simple and works reasonably well.

    proximity

    the nonnegative proximity matrix of dissimilarities. The diagonal should be zero and all other elements should be positive and symmetric.

    k

    the dimension of the projection.

    lambda

    initial value of the step size constant in diagonal Newton method.

    tol

    tolerance for stopping iterations.

    maxIter

    maximum number of iterations.

  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. def [B](y: B): (Operators, B)

    Permalink
    Implicit information
    This member is added by an implicit conversion from Operators to ArrowAssoc[Operators] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc

Inherited from AnyRef

Inherited from Any

Inherited by implicit conversion any2stringadd from Operators to any2stringadd[Operators]

Inherited by implicit conversion StringFormat from Operators to StringFormat[Operators]

Inherited by implicit conversion Ensuring from Operators to Ensuring[Operators]

Inherited by implicit conversion ArrowAssoc from Operators to ArrowAssoc[Operators]

Ungrouped